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1.0 Statement of Work and Status of Research Effort

Four tasks co.mprised our Phase I effort to make the Phoenix environment
accessible to all IRTPS participants. Our fulfillment of these tasks is summa-
rized by section below. A more complete description of our research effort can
be found in Appendix A, which is our report to the IRTPS workshop in Santa
Cruz, and Appendix B, a reference manual for the Phoenix testbed.

1.1 Make the Phoenix System Portable

We have made Phoenix portable to any TI Explorer (color or B&W) and to the
MicroExplorer. It is packaged into one system that includes all non-standard
(non-proprietary) support code we use to run it. The complete system can be
provided to other laboratories and research groups on tape as a TI Load Band.
We have provided supporting documentation for the testbed (see Appendix B),
enhanced the on-line help facilities, and annotated the code.

1.2 Instrument the System

Phoenix is now instrumented at the three levels discussed in our contract pro-
posal. Using tools provided by the Explorer, we meter the system performance
(implementation level). We measure performance of problem solving in the
domain by assessing such factors as the amount of forest burned and re-
sources consumed by agents (time, fuel, etc.). At the solution level, we provide
measurement tools that are suited to our own problem solver and hooks for the
- -lutions developed by other researchers. The instrumentation is built into a

'm user interface that allows enabling and disabling of measurement at
ea.(. vel independently, providing flexible control over the duration and level.
For more information, see Section 3.3 of Appendix A.

1.3 Provide Baselines

We have developed baseline scenarios for several situations that are both char-
acteristic of this domain and require timely response to environmental
changes. One of these scenarios, described in detail in Section 3.4 of Appendix
A, involves a single fire whose profile changes dramatically due to shifting
environmental conditions, so that the nature of the threat changes from the
potential loss of forest to loss of populated areas. A problem solver fighting this
fire -ust .,S',,.. A i- , . I- . ,-!,t, a t e I .%-,tsV .AV chAng-e t av i loing a
highly-valued area. Another scenario we have developed presents the problem
solver with multiple fires and limited fire-fighting resources which mast be
managed efficiently to prevent one or more of the fires from spreading out of
contcol. By limiting the number of fire-fighting agents available, and limiting
the amount of fuel each can carry (requiring them to refuel periodically), this

2
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scenario forces the problem solver to allocate its resources wisely in order to
control the fires.

A scripting capability allows the user to create and store such scenarios for
establishing new baselines, developing new real-time problem solving solu-
tions, and testing the effectiveness of those solutions. Scripts give control over
environmental factors such as when and where fires start and wind ,harsc-
teristics, and the resources available for fire-fi.ghting (how many agents of
each type, what are their speeds, fuel capai~ies, fields of view). The timing of
environmental changes is specified in scripts, allowing the user to control
when events occur in the simulation for testing purposes. Instrumentation
functions can be run within scripts to gather data useful for development and
testing.

1.4 Modularize System Components

We have modularized Phoenix so that other researchers can work with all or
part of it. The five levels of the system are described in Section I of Appendix
A. Code for each of these levels has been separated into self-contained building
blocks. The first two levels are the fire simulation testbed, and are comprised
of the system kernal (graphic user interface), the task scheduler, maps of the
environment, and the fire simulation task. Researchers interested in design-
ing and implementing agent architectures for real-time problem solving could
test them in this simulated, instrumented testbed environment (see Appendix
B). The next level is a generic agent architecture shell - a set of functional
components common to all agents. Code to interface these components with
the testbed is included with this level, so that researchers interested in work-
ing with our functional decomposition of agent capabilities need only instanti-
ate these components -- sensors, effectors, reflexes, and cognitive capabilities --
with their own versions. The fourth level includes our versions of these com-
ponents. This provides a specific agent architecture that is distinctive primar-
ily for the planning style used in the cognitive component (skeletal planning
with delayed commitment to specific actions2 ). Researchers interested in
using our planning style as well as agent architecture could work with the
first four levels, creating their own agent types and organizing them according
to their research interests. The fifth level is the organization of fire fighting
agents; we use a hierarchical organization in which a single fireboss agent
with a global view directs the activities of semi-autonomous field agents with
local views. Researchers interested in working with our solution to real-time
problem solving in this domain would use all five levels to replicate and/or
extend our work. Appendix A of "The Phoenix Testbed" (Appendix B of t'his

2 For more on the our cognitive architecture, see "Trial by Fire: Understanding the

Design Requirements for Agents in Complex Environments", Cohen, et al., Al Magazine,
Vol. 10, No. 3, pgs. 32-48.
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document) shows the division of functionality into different code modules that
can be used to build the various levels of the system described above.

2.0 Workshop and Technical. Report;

Paul R. Cohen, A.E. Howe, and David M. Hart. Intelligent Real-Time
Problem Solving: Issues and Examples. Intelligent Real-Time Problem
Solving: Workshop Report, edited by Lee D. Erman, Santa Cruz, CA,
November 8-9, 1989, pages IX-1 -- IX-34.

Michael Greenberg and David L. Westbrook. The Phoenix Testbed. Technical
Report #90-19, Experimental Knowledge Systems Laboratory, Dept. of
Computer and Information Science, Univ. of Massachusetts.

These reports are included as appendices in this document.

3.0 List of Professional Personnel

Paul R. Cohen, principle investigator, co-authored the workshop report on the
Phoenix system (Appendix A) and presented it at the Santa Cruz workshop.

David M. Hart, lab manager, co-authored the workshop report and supervised
the research activities reported here.

Adele E. Howe, graduate research assistant, co-authored the workshop report
and participated in the Santa Cruz workshop.

Michael Greenberg, staff programmer, worked extensively to modularize the
system and make it portable to other research groups, and co-authored the
testbed documentation (Appendix B).

David L. Westbrook, staff programmer, developed instrumentation and facili-
ties to support baseline scenarios and experimentation and co-authored the
testbed documentation.

4.0 Interactions

Paul Cohen presented "Intelligent Real-Time Problem Solving: Issues and
Examples" at the Intelligent Real-Time Problem Solving Workshop in Santa
Cruz, November 8-9, 1989.

Gerald M. Powell is a visiting faculty member who is here under the Secretary
of ihe Army Research and Study Fellowship Program. Dr. Powell, who works
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for the Center for Command, Control, and Communications Systems,
CECOM, Ft. Monmouth, New Jersey, has been investigating computational
approaches to various problems in battlefield planning for the past five years,
and is very interested in the present capabilities and further design and devel-
opment of Phoenix.

We had five meetings in September and October, 1989, with members of Victor
Lesser's research group at Umass (Robert Whitehair and .ieith Decker) who
are exploring techniques for sophisticated real-time control in the Distributed
Vehicle Monitoring Testbed, and are interested in experimenting with them in
the Phoenix testbed.
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1. Introduction

This report presents our work on real time problem solving (IRTPS). The topic is
fundamentally challenging in the sense that it probably cannot be completely
addressed within the established knowledge-based and logicist paradigms, but
w" -quire methodological, theoretical, and technical developments.
Accordingly, this report looks at IRTPS from all these perspectives. Because
readers will have different interests, each section of the report is independent of all
sections except this Introduction. Section 2 offers a definition of IRTPS. Section 3
describes our real-time testbed, including its current status and portability, and
our timetable for making it generally available. Section 4 discusses the
architecture we have developed for real-time agents and our near-term research
goals. Section 5 is devoted to methodological issues, specifically, how
characteristics of environments constrain the design of agents (including an
assessment of the pros and cons of simulated environments), how to evaluate
IRTPS systems, and the need for analytic models of agent architectures.

The task environment for much of our research is a simulation of forest fires. The
task is to control simulated fires by deploying simulated agents, including "smart"
bulldozers, fuel carriers, and airplanes. (Smart agents have the simulated
physical abilities of, say, bulldozers, and some of the simulated mental abilities of
their human operators.) This is a realtime problem in the basic sense that the
environment changes while agents think and act. If agents think too long, the
fires get too big to control. If they don't think long enough, their plans may be
flawed and their actions may be less effective. (Section 2 refines this basic
definition of the real-time problem.)

The Phoenix system comprises five levels of software:

DES -- the discrete event simulator kernel. This handles the low-level
scheduling of agent and environment processes. Agent processes
include sensors, effectors, reflexes, and a variety of cognitive actions.
Environment processes include fire, wind, and weather. The DES
provides an illusion of simultaneity for multiple agents and multiple
fires.

Map -- this level contains the data structures that represent the current
state of the world as perceived by agents, as well as "the world as it
really is." Color graphics representations of the world are generated
from these data structures.

Basic agent architecture -- a "skeleton" architecture from which agents,
such as bulldozers, airplanes, and firebosses are created. The agent

2
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architecture provides for sensors, effectors, reflexes, and a variety of
styles of planning.

Phoenix agents -- the agents we have designed (and are designing) for
our own RTPS experiments.

Phoenix organization -- currently we have a hierarchical organization
of Phoenix agents, in which one fireboss directs (but does not control)
multiple agents such as bulldozers. Each Phoenix agent is
autonomous and interprets the fireboss's directions in its local
context, while the fireboss maintains a global view. A related project is
looking at multiple firebosses And distributed control.

The Phoenix environment (the DES and map level), the basic agent architecture,
and Phoenix agents are independent software packages that we offer to other
researchers (see Section 3.3). We will offer instrumentation for these components
of the Phoenix system by the end of Phase I of the IRTPS initiative.

Our research on IRTPS is part of a larger project whose goal is to develop a sound
basis for the design of AI agents. We are analyzing agents in terms of the
behavioral ecology view shown in Figure 1. This view encourages us to ask how
the characteristics of environments (including time) constrain the design and
behavior of agents. (We compare this view with the S/E model of Rosenschein,
Hayes-Roth and Erman, in Section 5). When we speak of a sound basis for design,
we mean the ability to predict how modifying the architecture of an agent will
change its behavior in a given environment. Currently, we do this by building
models that relate the architecture of an agent to behaviors. The methodological
implications of the behavioral ecology view and of modelling are discussed in
Section 5.

agent's agent's
architecture behavior
and knowledge

environment
structure and

dynamics

Figure 1. The three components of an agent's behavioral ecology.
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2. Definitions.

We begin this section with definitions of real-time problem solving and "the real
time problem." Next we examine some terms that are common in the IRTPS
literature, such as deadline, predictability, and time scale. These terms are vague,
and it is often difficult to tell whether they are intended as descriptions of an
agent's environment or its behavior. We propose six classes of terms that should,
we hope, reduce the vagueness and ambiguity of previous discussions of IRTPS.
Lastly, we show how the behavioral ecology view helps us compare and organize
different approaches to IRTPS.

2.1 IRTPS and the Real-time Problem

A crude definition of IRTPS was mentioned in the introduction:

The environment changes while agents think and act.

But this doesn't adequately convey the impact of changes in the environment upon
the agents. For example, while a bulldozer thinks about how to avoid a fire, the
position of the fire changes, and in some cases the bulldozer can be overrun. A
better definition makes explicit the value of problem solving and how it is affected
by changes in the environment:

The value of problem solving is a function of what the problem
solver does --- its thinking and acting --- and one or more
parameters in the environment, at least one of which changes
during problem solving.

Note that this definition makes no direct reference to time. This is because time is
itself an indirect way of talking about changes in the environment during problem
solving, and it is these changes, not the passage of time, that affect the value of
problem solving. When we say, "The fire is currently consuming 10 acres per
hour," we do not mean that an hour is worth ten acres. Time itself has no inherent
value. Time provides us a scale on which to measure events Chat do have value.
Consider an analogy to distance. We might say, "As we drive down this street,
property values increase by $10,000 a block," but we would not say that a block (e.g.,
200 yards) is worth $10,000. Throughout this document we will try to avoid giving
the impression that time has any value. We will try to foster the view that time
(like distance) is just a scale on which to plot changes in value.

Of course, we can define value to be a function of time, as in real-time operating
systems, but typically we measure value in terms of money, acreage, real estate,
lives saved or lost, and so on. Unlike time, these value functions may be nonlinear,
even discontinuous. This leads to the following definition of the "real time
problem":

4
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The value of problem solving does not alvays increase, nor
does it always decrease, during problem solving; thus simple
strategies such as "work for as long as possible," or "solve the
problem as quickly as possible," will generally not maximize
value.

Example: Measuring value in terms of the area of burned forest, we might collect
statistics on the relationship between area burned and the amount of time that
elapses while the fireboss sele.ts a plan. (For simplicity, we will plot elapsed time
against area saved instead of the area burned, so value increases on the y axis:)

area
saved

time elapsed during
plan selection

Apparently, a little time devoted to plan selection is worthwhile. After a point,
however, thinking longer doesn't save more forest. While this "inverted U" could
have many causes, the important point is that it seems to be characteristic of real
time tasks.

The inverted U function seems more representative of soft deadlines than hard
ones. Value decreases slowly when a soft deadline is missed, precipitously when a
hard deadline is missed. In Section 2.2 we formalize and illustrate a hard
deadline in the Phoenix environment.

It follows from this definition of the real time problem that an agent must have
control of the amount of time it devotes to problem solving. In terms of the previous
example, an agent should spend "just enough" time on plan selection---the
amount of time that corresponds to the highest point on the curve. Although this
picture is an oversimplification (we will discuss some of the complexitiJs later) it
does illustrate that if an agent cannot control the amount of time it spends on
problem solving, it cannot affect the value of its problem solving.

What does it mean for an agent to control the amount of time it spends on problem
solving. First, it does not mean that the agent controls the rate at which time
passes. We assume this is beyond every agent's control. Instead we mean that an
agent can with "one eye on the clock" decide whether to run a process or continue
running an interrupted process.

5
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Example: The Phoenix agent architecture provides for multiple execution methods
to achieve any goal. For example, LCioenix has several path planning methods.
Execution methods for a given task require different amounts of time. More
precisely, they differ in the amounts of time that are expected to elapse before each
terminates. One way that Phoenix agents control the amount of time they spend on
problem solving is to base the selection of execution methods on their estimated
time requirements.

Estimates figure heavily in this example, and in IRTPS in general. What remains
to be seen, in the course of this research, is what characteristics of the
environment affect the quality of estimates, and what characteristics of IRTPS
architectures affect their dependence on the quality of estimates.

2.2 Desciibing the Environment and Agents

Although our approach is to design agents for specific environments, we have
been content to describe environments at two levels of abstraction, both inadequate
for design. We believe this is common in the IRTPS literature.

The levels, with examples, are:
Implementation-specific: When a cell ignites, the simulator figures out

when its knights-tour-neighbors are going to ignite. It calculates the
rate of spread of the newly-ignited cell to its neighbors, accounting for
weather, slope, fuel type, etc.

Apple-pie general: The Phoenix environment is characterized by
unpredictable events, real-time constraints, and hard and soft
deadlines.

Neither level of description of the environment is appropriate for design. From the
first kind of description you can model the structure and dynamics of the
environment, so it is genuinely useful. But the second kind of description is
actually misleading without a lot of clarification, as the following examples show.

At the IRTPS Workshop 2, the Working Group on Architectures made a list of
characteristics of environments:

lots of data

low signal to noise ratio

unpredictable rates at which data arrive (varying quantity of data)

hard and soft deadlines

time-dependent value

spectrum of preiictability

2Pasatiempo, Santa Cruz, California. November 6 & 7, 1989.
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incompleteness in data

multiple time scales

combinatoric proliferation of things to attend to

Most of these seem self-explanatory. However, most could be interpreted as
descriptions of the agent as well as descriptions of the environment. Take
"multiple time scales." Our definition of time scale is the average time between
causal event cycles that have value for the agent. Some cycles are very short (e.g.,
the time between moving into a fire and getting burned) and some are much
longer (e.g., the time between a wind shift and the recognition of failure of a fire-
fighting plan). But it doesn't make sense to talk about time scales independent of
an agent; specifically, independent of the value of events to the agent. Without the
concept of value, there's no way to classify the limitless number of causal event
cycles, and so the distribution of time scales is uniform. The concept of value

enables us to select classes of events-those that have value to the agent-and
compute the average length of the'.r causal event cycles. Scale depends on the
agent design. It is not an inherent property of environments3 .

Which of the other characteristics listed above is inherent to environments, and
which depend on the agent design? For some, both interpretations make sense.
When we say "lots of data," we could mean two things: First unlike environments
like the blocks world, a lot is happening in the Phoenix environment--there's a lot
for the agent to attend to. This seems to be a description of an inherent
characteristic of the environment. But we might also mean that in this
environment, the agent's sensors can take in more stuff than it can process. So
"lots of data" can be interpreted as a characteristic of the environment or as a

potential problem for the agent.

Next, consider the "predictability" characteristic. When we say events are
unpredictable, we are usually mean "unpredictable for this agent." But, again, we
might mean "unpredictable for any agent." Once again, we must take care to
separate the inherent characteristic of the environment-the one that would
constrain any agent-from the potential problem that the environment poses the
agent.

The resolution of this ambiguity should provide us with the appropriate level of
description of environments for doing design.

There is a predicate called, Ue, that takes environmental events as
argune. U(e) leals th.L.1 _lo agent canpreuic evenLt e.

There is a predicate Ua that takes environmental events and agents as
arguments. If Ua(e,a) then agent a cannot predict event e.

3We are grateful to Les Gasser for pointing this out.
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By definition, Ue(e) implies Ua(e,a) for all a. But it is not the ese that T,(e.a)
implies Ue(e). This means, at the very least, that we have to be careful when we
say an environment is characterized by unpredictability. More importantly, it
points to a gap in our understanding of the agent-environment interaction: If
Ua(e,a) and not Ue(e), there must be something about event e that makes it
unpredictable to agent a, ard "f we want to design an agent a' for which Ua(e,a') is
false, we have to know why Ua(e,a) is true. To designers, it helps to know Ue(e),
but knowing Ua(e,a) doesn't help us fix the problem. We need to know something

else. For example, if changes in the position of the fire are unpredictable to an
agent, and we view this as a problem, then we need to know why the changes are
unpredictable. Two contributing factors may be the limited field of view of agents
and the statistical distribution of changes in wind speed and direction. One is an
architectural characteristic, the other an environmental characteristic, and
together they produce Ua(fire-position,agent).

Terms like "unpredictable" are just shorthand for problems faced by particular
agents, not characteristics of the environment, except when they are universally
quantified over agents. From the standpoint of design, they don't help us much.
Instead we will develop a vocabulary to describe environments in problem-
independent terms. When we say that an event has a statistical distribution we do
not imply anything about the architecture of an agent, or anything about the
problem that may arise for an agent as a result of the event having a statistical
distribution. We suggest six classes of terms:

Environment characteristics (ECs). These are problem-independent,
architecture independent descriptors of the environment. For
example, a parameter (say, windspeed) changes aperiodically. A
counterexample: Windspeed is unpredictable.

Architecture characteristics (ACs). These are problem-independent,
environment-independent descriptors of the architecture. For
example, the architecture has a random access memory of limitless
capacity; or, the plan selection mechanism is bounded in computation
time. A counterexample: the error recovery mechanism exhibits
graceful degradation. This is a counterexample because graceful
degradation implies something about the problem you are trying to
solve.

Problems. A problem is a shorthand for an undesirable behavior, that
is, an undesirable interaction between a particular agent and a
particular environment. For example, unpredictability is a shorthand
for interactions in which, because an agent did not anticipate an
environmental event, some negative consequence occured.

Inherent problems. An inherent problem is a problem that we believe
all agents face, that is, an undesirable interaction between any agent
and a particular environment.

Solutions. A solution is a shorthand for a desirable behavior that we, as
designers, want to see instead of some undesirable behavior-the

8
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problem. For example, a fast sense-act loop is sometimes a solution to
the unpredictability problem.

Solution realizations. A solution realization is one or more architecture
characteristics or modifications to architecture characteristics; in
short, what we intend to do to the architecture to ensure that the
solution (which is a behavior, remember) will occur when we want it
to.

In Section 5.1, we illustrate how design of a real-time mechanism proceeds from
an informal description of a problem, through a formal description in terms of
ECs, ACs and Problems, to solutions and solution realizations.

2.3 The Behavioral Ecology Tiangle Organizes and Justifies IRTPS
Approaches

We can characterize the dozens of approaches to IRTPS in terms of the behavioral
ecology triangle in Figure 1. First, what behaviors do we want from IRTPS
systems? Second, what characteristics of the environment make particular
behaviors necessary or desirable? Third, what architectural decisions can
designers make to achieve the desired behaviors in the given environment?

Example: A desired behavior is for Phoenix agents to meet their deadlines. Two
characteristics of the Phoenix environment make this desirable: First, most fires
must be contained by the coordinated efforts of several agents. Second, fires spread
in such a way that if one agent is very late, the work of others is jeopardized.
Another characteristic of the environment conspires against coordinated effort:
unpredictable changes in parameters such as wind speed and direction
differentially affect the progress of agents. The architectural decisions that allow
Phoenix agents to meet deadlines despite unexpected events are discussed in
Section 4.2.

The behavioral ecology view provides a framework for organizing the real time
literature. For example, we can ask what characteristics of the environment make
anytime or approximate processing behaviors necessary or desirable, and what
architectural choices are needed to implement anytime or approximate behaviors
in particular environments. But we have found that the principal advantage of the
behavioral ecology view is that it forces us to justify our design decisions in terms
of agents' environments.

Example: It is not uncommon to claim that IRTPS requires a behavior called
"graceful degradation." (Other candidates are anytime or approximate behavior).
Too often, the next step is to build an architecture that implements this behavior in
some environment. This is backwards. The first step must always be to ask
whether the environment makes graceful degradation (or anytime, or
approximate behavior) necessary or desirable.

9
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3. A Real Time Testbed.

This section describes describes the Phoenix testbed from severa] perspectives.
Section 3.1 describes how the testbed appears to a user. Section 3.2 focuses on how
the discrete event simulator manages simulation time and cpu time for multiple
pseudo-parallel processes. Section 3.3 describes three levels of instrumentation for
the testbed. Section 3.4 presents a "baseline scenario," that can be run again and
again under different conditions to test real-time architectures. Section 3.5
addresses portability issues. The structure and implementation of the testbed is
independent of the architecture of Phoenix agents; indeed, we hope that other
researchers will use the testbed as an environment in which to test their own
agent architectures. For this reason, we will postpone discussing the Phoenix
basic agent architecture until Section 4.

3.1 The Appearance and Behavior of the Testbed.

If you watch the Phoenix system run, this is what you will see: A color
representation of Yellowstone National Park, in which fires are spreading and
several bulldozers, fuel-carriers, and other agents are travelling and cutting
fireline. You will see different kinds of vegetation coded by color. You will also see
roads and rivers of different sizes, elevation lines, lakes, houses, and
watchtowers. Status windows present elapsed time, wind speed, and wind
direction. You have full control over the resolution of your view; for example, you
can see the entire map at low resolution or just a few acres at high resolution. You
can see the environment as it really is, and as it is perceived by one or more of the
agents (which have limited fields of view). Figure 2 shows a view of an area of the
park, unfortunately not in color (but see [Cohen, 1989] for color pictures). The grey
region at the bottom of the screen is the northern tip of Yellowstone Lake. The
thick grey line that ends in the lake is the Yellowstone River. The Grand Loop
Road follows the river to the lake, where it splits. The Smokey the Bear symbol "n
the bottom left corner marks the location of the fireboss, the agent that directs and
coordinates all others. Two bulldozers are shown cutting fireline around a fire in
this figure. Two other bulldozers are parked near the fireboss, along with a plane
and a fuel carrier.

The Map level of the Phoenix environment, from which the graphics
representations of the environment are generated, is constructed from Defense
Mapping Agency data. Because it includes ground cover, elevation, moisture
content, wind speed and direction, and natural boundaries, we have been able to
construct a moderately realistic simulation of forest fires (but see Section 5 for a
distinction between realism and accuracy). For example, real fires and our
simulated fires spread more quickly in brush than in mature forest, are pushed in
the direction of the wind and uphill, burn dry fuel more readily, and so on. These
conditions also determine the probability that the fire will jump fireline and
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r. itural boundaries; and the intensity of the fire (which is coded by color in the
simulation) The physical abilities of fire-fighting agents nre also simulated
accurately; for example, bulldozers move at a maximum speed of 40 kph in transit
(on the back of a truck), 5 kph traveling cross-country, and 0.5 kph when cutting
fireline.

Recently, we have implemented some realistic weather factors, specifically,
lightning strikes which start fires with some frequency, and rain, which affects
the moisture and thus the friability of fuels.

Fires are fought by removing one or more of the things that keep them burning:
fuel, heat, and air. Cutting fireline removes fuel. Dropping water and flame
retardant removes heat and air, respectively. In major forest fires, controlled
backfires are set to burn areas in the path of wildfires and thus deny them fuel.

In the past, fire-fighting agents were inexhaustible, but recently we have started to
model their consumption of resources. The following example of monitoring fuel
levels and refueling conveys the flavor of problem solving within and among
Phoenix agents.

Example: Bulldozers monitor their own fuel levels and notify the fireboss when
their tank drops below a preset level. Upon reciept of the "I'm low on fuel"
message, the fireboss marks the bulldozer with a status of "needs-refueling" and
when the bulldozer becomes idle (i.e. completes the segment of fireline it is
working on), the fireboss selects a refueling plan for that bulldozer. This involves
allocating an available fuel-carrier, calculating a rendezvous point on a road near
the bulldozer, telling the bulldozer where to go and who to look for, telling the fuel-
carrier where to go, and waiting for an acknowledgement from the .bulldozer that
it has received fuel. The bulldozer and fuel-carrier then interact through the
following process: the bulldozer notices the rendezvous, requests service, and
waits for a service-complete acknowledgement from the fuel-carrier. The fuel-
carrier arrives at the destination, waits for service requests, queues them up if
necessary (not currently utilized), transfers fuel via a pump-effector, terminating
when either the bulldozer is not present or leaves, the refueling tank goes dry, the
bulldozer's tank is full, or the requested amount is pumped. The fuel-carrier then
tells the bulldozer it has finished and the bulldozer in turn tells the fireboss that
the refuleing task has been completed.

3.2 The Implementation of the Testbed

Underlying the Phoenix testbed is a discrete event simulator (DES) that creates the
illusion of a continuous world, where natural processes and agents are acting in
parallel, on serial hardware (currently a Texas Instruments Explorer II Color
Lisp Machine, but see Section 3.5). In the simulation, fires burn continuously over
time and agents act in concert to control it. Some of these actions are physical, as
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in digging fireline and cutting trees. In parallel to these physical actions, agents
perceive, move, react to perceived stimuli, and think about what action(s) to
execute next.

The DES manages two types of time: cpu time and simulation time. CPU time
refers to the length of time that processes run on a processor. Simulation time
refers to the "time of day" in the simulated environment. The illusion of
continuous, parallel activity on a serial machine is maintained by segregating
each process and agent activity into a separate task and executing them in small,
discrete time quanta, ensuring that no task ever gets too far ahead or behind the
others. The default setting of the synchronization quantum is five simulation-time
minutes, so all tasks are kept synchronized to within five simulated minutes of
one another.

The quantum can be increased, which improves the cpu utilization of tasks and
makes the simulator run faster, but this increases the simulation-time disparity
between tasks, magnifying coordination problems such as communication and
knowing the exact state of the world at a particular time. Conversely, decreasing
the quantum reduces how "out of synch" processes can be, but increases the
running time of the simulation.

Within the predefined time quantum, all simulated parallel processes begin or
end at roughly the same simulation time. Types of tasks differ in how they are
"'charged for" cpu time and simulation time. Sensory tasks run for very short
intervals of simulation time, after which they are rescheduled; this gives them a
high sampling rate compared to the rate at which the world is changing. Effector
tasks may use very little simulation time, or the full synchronization quantum.
Fire tasks always run for the full synchronization quantum.

All these tasks are allotted as much cpu time as they need by the DES; there is no
constant proportionality between the simulation time and the cpu time they
require. To see why, note that fires are implemented as cellular automata, so that
the cpu time required to calculate the spread of the fire depends on the size of the
fire. It may take only a fraction of a second of cpu time to calculate five simulation-
time minutes of burning for a small fire, but several cpu seconds to calculate the
five simulation-time minutes for several large fires. Similarly, the amount of cpu
time required to calculate a few simulation-time seconds of sensor processing
depends on the type of sensor being simulated, so there is no constant
proportionality between simulated sensor time and cpu time.

In contrast, there is a constant proportionality between the cpu ume allocated to
cognitive tasks and simulation time. This is because we want to "charge" agents at
a fixed rate for thinking. Because cognition and other processes, such as the fire,
are simulated parallel processes, they are always allocated the same amount of
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simulation time. So when both have run for their allocated times

elapsed-simulation-time(cognition) = elapsed-simLiiation-time(fire)

as measured by the simulation time clock. Although these processes could take
arbitrary amounts of cpu time, it is advantageous to impose a strict relationship
between cpu time and the simulation time of the planner and the fire. Thus,

elapsed-simulation-time(cognition) = k * cpu-time(cognition)

and, from the previous expression,

elapsed-simulation-time(fire) = k * cpu-time(cognition)

The advantage of this proportionality is that we now have a way to exert time
pressure on cognition. The real-time knob is the device that exerts *pressure,

simply by increasing k. Clearly, we can change k without changing the amount of
cpu time allocated to cognition, and when this happens, the net effect is to increase
the amount of simulation time allocated to the fire. Because of the strict
proportionality between simulation time and cpu time for cognition, the indirect
effect of increasing k is to reduce the amount of simulation time allocated to
cognition, relative to the simulation time allocated to the fire. That is, to increase
time pressure on cognition. Currently k = 300, which means that one second of cpu
time for cognition is matched by five minutes of simulation time for the fire. If we
increase k to 600, then the fire is allowed to burn for 10 minutes for every cpu
second of cognition time.

Cognitive tasks are allotted a full synchronization quantum each time they run. At
times there are not enough cognitive activities to fill a quantum, in which case the
task ends and waits to be rescheduled. Some cognitive activities take longer than a
full quantum, in which case their internal state is saved between quantum steps.

Example: Imagine it is now 12:00:00 in the simulated world, and an agent is about
to begin planning. After one cpu second, simulation time for the agent is 12:05:00.
The fire is thus "owed" five minutes of simulation time. But before it runs, the DES
runs all sensor, effector, and reflex tasks. After that, it may take 7 cpu seconds to
calculate the effects of five minutes of fire. Moreover, simulation time is still
12:05:00, because the agent and the fire are simulated parallel processes. So a;ter
roughly eight cpu seconds (one for the planner, negligible time for sensors,
effectors, and reflexes, and seven for the fire), we have simulated five minutes of
planning and five minutes of fire, and Both processes are paused aL 12.05.00.
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3.3 Instrumentation of the Testbed

The Phoenix testbed is designed to support experiments with a variety of IRTPS
architectures---not only our Phoenix agent architecture. Currently it has been
instrumented to some extent, and much more instrumentation is planned. In this
subsection we describe three levels of instrumentation suggested by Nort Fowler.
Low level met'ics are largely hardware-dependent estimates of how the software
system is utilizing the hardware. Middle level metrics give us a fine-grained
picture of how a specific architecture behaves over time; for example, we can
measure the communication overhead among agents, the time required to
respond to significant changes in the environment, the amount of time spent in
error recovery, the ability of scheduling algorithms to meet deadlines, and so
on.are specific to the agent architecture. High level metrics are domain specific.
They record features of the environment that are affected by the agents, such as
acreage burned by fires, and consumption of resources.

Any researcher who implements a new agent architecture in the Phoenix
environment will have to define middle-level metrics, because these are
architecture specific, but probably won't have to define high and low level metrics.
For example, Phoenix agents maintain a timeline of pending actions, and we need
to know the average latency between posting and executing an action. An agent
architecture implemented as a blackboard system may instead look at the
scheduling of tasks on an agenda. Most of our middle level metrics are for the
Phoenix agent architecture, not for unanticipated other architectures.

Currently, the following instrumentation is complete or nearly so:

Low Level Instrumentation
Run time, Cpu time, Disk wait time, Time since last run, Idle time,

Utilization, Overall. Each of these is graphed against time.

We also provide an interface to the Explorer performance metering tools
which work at the function call level and provide for each function the:
Number of calls , Average run time, Total run time, Real time,
Memory allocation, Page faults

Middle Level Instrumentation
Statistics on cpu utilization by the cognitive component of each agent to

see the actual profile of real-time response, graphed against time

The latency between when actions on the timeline become available for
execution and when they are executed.

Metrics on sensor and effector usage

Metrics on reflexes
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The goal of these metrics is to compare the utilization of cognitive and other
resources in different scenarios (see Section 3.4). Each scenarin will contain
important events (e.g., a fire is detected). We will graph these metrics against time
and annotate the graphs at the points that the significant events occured, so we
can see how the agent architecture responded.

High Level Instrumentation.
Fire destruction is currently measured by amount and type of forest,

houses, and agents burned.

Resource allocation is currently measured by amount and type of agents
employed to fight the fire, gasoline consumed, fireline cut, distance
traveled, and time required to contain the fire.

3.4 Baseline Scenarios

One advantage of studying IRPTS in a simulated environment is the ability to run
the same environmental scenario again and again while modifying aspects of the
agent architecture (see Section 5). We have recently implemented the ability to
define scripts, which include the type and number of available agents, and guide
the environment through a series of changes in conditions such as windspeed and
other weather conditions. We also have the ability to introduce stochastic factors
into scripts, such as iightning strikes. Besides scripts, we will soon be able to
provide baseline statistics on events such as rates of spread of fires in different
conditions.

Scripts play an important role in evaluating IRTPS systems, and comparing
IRTPS architectures. By design, scripts can force an agent to confront virtually
any IRTPS issue. Here is a simple script that raises the six IRTPS issues that
were discussed in the original IRTPS Initiative:

Materiel:
One fireboss to coordinate the activities of three bulldozers

Bulldozers can move 6.5 kph in softwood, 56 kph on road, .5 kph while
building line

One watchtower at location approx 42500x37500

Environment:
A fire of radius 700 km starting at coordinates approx 45000x46250,

Starting wind speed and direction 3 kph from the south

Environmental Changes:
At time 2 hr, wind changes to 10 kph from the NW, threatening

buildings---the base and lodge

Since it involves a burning fire, the script requires agents to produce relevant
output in a timely fashion. The particular scenario includes an environmental
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change (asynchronous with the reasoning system) that invalidates previous
input, necessitating the detection of a new threat to higher priority areas and a
redirection of ongoing reasoning in order to protect them. To handle this scenario,
a system must reason efficiently and effectively about temporal processes, namely
the expected progress of a fire under particular environmental conditions and the
abilities of a limited number of agents to take steps, over time, toward putting out
the fire.

We must add that this script confounds the current implementation of Phoenix
agents. They are currently incapable of redirecting their efforts to save the base
and lodge.

3.5 Portability.

The Phoenix system runs on color and monochrome Texas Instruments Explorers
and MicroExplorers. We can package everything together (including support-code
for the frame system, grapher, EKSL utilities, etc.) as needed. We are making
progress on the documentation.

The entire Phoenix system is designed to be modular, so fellow researchers can
use the components they want. The smallest self-contained module, and the most
basic, is the Phoenix environment. This includes the DES, the Map layer, and the
user interface. We are confident that a researcher could take this code and build
his or her own agents to interact with it. However, we have not done this in our
own lab, so we cannot be sure.

Above the environment are three additional levels of software---the Phoenix basic
agent architecture, our own Phoenix agents, and the organizational structure that
holds among our Phoenix agents. The basic agent architecture is a skeleton with
hooks for sensors and effectors, reflexes, and a cognitive component (see Section
4). Some weeks ago the entire lab went through the exercise of defining a new type
of Phoenix agent (an airplane) given only the basic agent architecture, and we are
confident other researchers can do the same. There are really two aspects to
defining a new agent. One is mostly bookkeeping: We define frames for the agent
that describe its physical abilities, so that the DES knows how it behaves over time.
We also define frames that add instances of the new agent to a script. This is the
easy part. The hard part is defining the cognitive abilities of the agent. In terms of
the basic Phoenix agent architecture, this means defining plans, execution
methods, a con..it, aoa,,lr, andl ^Aar architectural components discussed in
Section 5.

Of course, the Phoenix environment does not and should not care about the
cognitive component of a new agent, other than to schedule its processes to
guarantee the illusion of simultaneity with other ageuts and environmental
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processes. Thus, it is relatively easy to tell the Phoenix environment about the
physical abilities of new agents, as in the examples above, and unnecessary to tell
the environment how the cognitive components of the agents work. We hope this
will make it easy for researchers to use the Phoenix environment, or the
environment and the basic agent architecture, to design and test their own agents.

4. Toward a Solution: The Phoenix Agent Architecture

A uniform agent architecture is shared by all agents. This architecture is the
structure of the agent, the "hardware" that dictates the fundamental faculties and
limitations of the agent. The structure endows and bounds acuity, speed of
response, and breadth of action. The structure constrains what an agent can do,
but not what it does. Specific methods control what the agent does. Control
methods determine what to do and how to do it. This dichotomy between structure
and control is reflected in this subsection and the one following it. Section 4.1
describes the agent architecture and Section 4.2 focuses on techniques for real-
time problem solving. For a more detailed description of these components, see
[Cohen, 1989])

4.1 Phoenix Agent Architecture

The agent architecture has four components. Sensors perceive the world. Each
agent has a set of sensors, such as fire-location (are any cells within my radius-of-
view on fire?) and road-edge (in what direction does the road continue?). Effectors
perform physical acts such as moving or digging fireline. Reflexes are simple
stimulus-response actions, triggered when the agent is required to act faster than
the time-scale for the cognitive component. An example is the reflex of a bulldozer
to stop if it is moving into the fire. The cognitive component performs mental tasks
such as planning, monitoring actions, evaluating perceptions, and
communicating with other agents. Although every agent has these components,
each component can be endowed with a range of capabilities.

Sensors get input from the world (fire simulation and map structures). Their
output goes to state memory in the cognitive component, and also to the reflexive
component (triggering instant responses in the form of short programs to the
effectors). For example, a bulldozer sensor that detects fire within its radius-of-
view updates state memory automatically. If the detected fire is in the path of the
bulldozer, the emergency-stop reflex is also triggered. Effectors are programmedby .. ;+ ........ + anda~ byi,+p,,+ performs actio" n Oin

world. In the preceding example, the emergency-stop reflex would program the
movement-effector of the bulldozer to stop. If the fire were not too close, the
cognitive component might then step in and program the movement effector to
start moving parallel to the fire. If the cognitive component also programmed the
blade effector to put the blade in the down position, the bulldozer would not only
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maintain a safe distance from the fire, but it would also build fireline as it moved.
Sensors and effectors are first-class objects whose interactions with other
components and the world are implemented in Lisp code. Reflexes, as mentioned,
are triggered by sensory input, which causes them to program effectors to react to
the triggering sensation. They are implemented in production-rule fashion, with
triggering sensations as their antecedent clauses and effector programs as their
consequents. Because they respond directly to the environment and so must keep
up with it, sensors, effectors, and reflexes operate at the same time scale as the
simulation environment and are synchronized as closely as possible within the
discrete event simulator.

The cognitive component receives input from sensors and sends programs to the
effectors to interact with the world. It is responsible for data integration, agent
coordination, and resource management, in other words, most problem solving
activity. This component operates in larger time slices than the others, thus
reducing the overhead of context switching, but increasing the possibility of
reasoning with outdated information.

The Phoenix cognitive component directs its own actions by adding prospective
actions onto the timeline, a structure for reasoning about the computational
demands on the agent, then selecting and executing these actions one at a time.
Actions may be added in response to a change in environmental conditions (e.g., a
new fire) or as part of the computation of other actions (e.g., through plan
expansion). Every action that the cognitive component accomplishes is
represented on the timeline with its temporal relations to other actions and
resource requirements (e.g., processing time and necessary data). The cognitive
scheduler decides which action to execute next from the timeline and how much
time is available for its execution.

Actions may perform calculations, search for plans to address particular
environmental conditions, expand plans into action sequences, assign variable
values, process sensory information, initiate communication with other agents, or
issue commands to sensors and effectors. These actions are represented in
skeletal form in the plan library. Actions are described by what environmental
con-litions they are appropriate for, what they do, how they do it (the Lisp code for
their execution, called the execution methods), and what resources and data,
environmental and computational, they require. A plan is a special type of an
action. It includes a network of actions related by their data references and
temporal constraints.

Planning is accomplished by adding an action to the timeline to search for a plan
to address some conditions. When the search action is executed, it selects an
action or plan appropriate for the conditions and places it on the timeline. If this
new action is a plan, then when it is executed it expands into a plan by putting its
sub-actions onto the timeline with their temporal inter-relationships. If it is an
action, it instantiates the requisite variables, selects an execution method (there
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may be several with differing resource requirements and expected quality of
solution), and executes that method. We call this style nf plinning skeletal
refinement with lazy expansion. Plans are represented as shells that describe
what types of actions should be executed to achieve the plan but do not include the
exact action or its variable values until it is executed. Delaying expansion allows
the expanded plan to address more closely the actual state of the environment
during execution.

This planning style is common to all agents in the Phoenix planner, though it is
flexible enough so that agents with a variety of cognitive capabilities are possible.
For example, the fireboss has far more sophisticated methods for gathering and
integrating information than the bulldozer does. It can direct the actions of the
bulldozers, while the bulldozers can only make requests of the fireboss. However,
the fireboss, unlike the bulldozers, does know how to get out of the way of the fire

because it does not work close to the fire.

Creating a different type of agent requires defining a cognitive component. One
can optionally define a set of programmable sensors and effectors (of arbitrary
complexity) and add a set of reflexes to handle situations that require instant
response by the agent. To create sensors and effectors, the simulator must be told
rates of action under varying environmental conditions, range of perceptions, and
other physical capabilities. Creating reflexes involves describing the triggers, the
expected output from sensors, and the response, the programming for the
effectors. The default cognitive component consists of plans, which are networks of
actions available to the agent and tailored to situations in the environment, and
methods which describe how to execute the actions. Creating a new cognitive

component with the same structure as that described here involves defining a new
plan library.

Several design decisions in the Phoenix agent architecture have been made
specifically to facilitate real-time control. One important decision is to incorporate
both reflexive and cognitive abilities in agents, enabling agents to respond
reflexively to events that occur quickly, while responding more deliberately to
resource management and coordination problems on a longer time scale. The
combination of a reflexive and cognitive component accounts for time scale
mismatches inherent in an environment that requires micro actions and
contemplative processing. Micro actions, such as following a road and keeping out
of the immediate range of the fire, involve quick reflexes and little integration of
data. Contemplative processing, such as route planning, involves long search
times and integration of disparate data such as available roads, terrain
conitions, an' fire reports. TMs horizontal decomposition ensures that the agent
can perform reflex actions to keep it from danger and maintain the status quo,
while also performing more contemplative actions. This strategy for responding to
disparate demands of the environment is advocated by Brooks, and Kaelbling;
although in both cases, they chose more levels of decomposition for their domains.
Our agent architecture, in effect, combines two different planning components:
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one highly reactive, triggered by specific environmental stimuli and operating at
very small time scale, and the other slower and more contemplitive, integrating
large amounts of data and concerned with resource management and
coordination.

Another design feature that facilitates real-time control is the timeline and its
single representation for all actions. Because prospective actions share a uniform
representation on the timeline, all problem solving actions have access to the same
memory structures and can be monitored and allocated resources using the same
mechanisms. All problem solving tasks are subject to the same constraints with
respect to resource allocation: how much time is required, what information
gathering resources are required, and what data is necessary. This framework
allows new cognitive capabilities to be integrated easily by defining their
requirements within the action description language and relying on the timeline
and its supportive scheduling mechanisms to temporally arbitrate their
allocation.

Lazy skeletal expansion also facilitates real-time control. Plans are only partially
elaborated before the agent acts. This deferred commitment exploits recent
information about the state of the world to guide action selection and instantiation.
Completely deferred commitment, such as in reactive planning, is probably not
tenable when agents or actions must be coordinated or scarce resources managed.
The integration of planning and acting in Phoenix is designed to be responsive to a
complex dynamic world by postponing decisions on exactly what action to take,
while also grounding potential actions in a framework (skeletal plans coordinated
on the timeline) that accounts for data, temporal and resource interactions.

4.2 Real-Tirne Control in the Agent Architecture

How does a Phoenix agent respond to real-time pressure? One approach is to
control processing requirements. This enhances the flexibility of actions and the
sophistication of control decisions. Providing alternative execution methods for
timeline entries ensures a range of choices that vary in their timeliness. Different
scheduling strategies for managing the actions on the timeline provide greater
responsiveness to real-time constraints. Another approach is an expectation-based
monitoring technique that reduces the overhead of monitoring while providing
early warning of plan failure. Earlier warning of plan failure affords the planner
more time to adjust and more flexibility in possible responses. These approaches
are discussed below.

4.2.1 Control of Processing Requirements

Processing requirements can be controlled in two ways: by controlling how much
time is used by individual actions and by controlling the overall distribution of time
across all actions. Approximate processing and anytime algorithms are methods
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for controlling how much time is used by individual actions. In these methods,
processing time is traded against quality or correctness if snluton to satisfy time
constraints that could not be managed under rigid processing demands. In
Phoenix, these methods are alternative execution methods. Execution methods, as
introduced in Section 4.1 are lisp code that performs the cognitive actions. Each
cognitive action may may be executed by one of several execution methods, with
differing time requirements and so differing solution expectations. The Phoenix
planner delays the choice of an action's execution method until the cognitive
scheduler selects the action for execution, thereby allowing the scheduler to select
a method suited to existing time constraints. By postponing the ultimate
commitment o, cognitive resources until a choice must be made, those resources
can be allocated judiciously.

Alternative execution methods are particularly useful in actions that incur
potentially high computation costs with predictable results, such as path
planning. Phoenix uses an A* algorithm to calculate paths for bulldozers. It
searches the two-dimensional map representation of the world for the shortest
travel time path between two points. It expands the current best path
incrementally, searching each unobstructed neighboring cell for the best next
step. The algorithm is parameterized to work at multiple levels of resolution, so
that search steps could range from 128 meters up to 8 kilometers. A small search
step, 128 meters, yields the shortest path, requiring the least travel time for the
bulldozer. However, this resolution requires the most computation (i.e., cognitive
resources). The largest search step, 8 kilometers, typically yields a longer path,
which requires more travel time, but can be calculated quickly, consuming less
computation time. At times it even fails to find a solution, since there are
bottlenecks in the map that don't appear at large search steps. Each of these
resolutions constitutes a different execution method for calculating a path,
alternative methods which trade-off cognitive-time for quality of solution.

The cognitive scheduler controls the overall distribution of cognitive processing
time across all actions. At each time step, it selects the next action from the
timeline to execute, chooses an execution method for the action, and executes it.
Thus, the scheduler is key to controlling the responsiveness of the cognitive
component to real-time constraints. The current version of the scheduler for
Phoenix is rudimentary and considers only a short horizon for scheduling
decisions. It selects the next action for execution based on timeline ordering,
action priority and the amount of time an action has been waiting for execution. A
more sophisticated scheduler is being designed now.

"I f l1 r4 5 IM I" I flfl V94.. ophisiLicated Monitorng inlrough invelopes

Just as we can explicitly represent the movements of an agent through its physical
environment, so can we represent its movement through spaces bounded by
failure or other important events. These spaces are called envelopes. Typically,
one dimension of an envelope is time, and the others are measures of progress.
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For example, imagine you have one hour to reach a point five miles away, and

your maximum speed is 5 mph. If your speed drops below its maximum, for even
a moment, you fail. As long as you maintain your maximum speed, you arewithin
your envelope. The instant your speed drops below 5 mph, you lose orviolate your
envelope. This envelope is narrow, because it will not accomodate a range of
behavior: any deviation from 5 mph is intolerable. Most problems have wider
envelopes. Indeed, real time systems should be designed to ensure that narrow
envelopes are the exception, not the rule.

The following problem illustrates a wider envelope. A bulldozer has one hour to
travel five miles, as before, but its maximum speed is 10 mph. It starts slowly

(perhaps the terrain is worse than expected). After 40 minutes it has travelled just
two miles. It can still achieve its goal, but only by travelling at nearly maximum
speed.

Clearly, if the agent waits 40 minutes to assess its progress, it has waited too long,
because an heroic effort will be required to achieve its goal. In Phoenix, agents
check their envelopes at regular intervals, hoping to catch problems before they get
out of hand. One near-term research goal is to develop a theory of envelopes that
will tell us when and how often they should be checked.

Agents check failure envelopes, which tell them whether they will absolutely fail

to achieve their goals, andwarning envelopes, which tell them that they are in

jeopardy of failure. Typically, there is just one failure envelope but many possible
warning envelopes. To continue the previous example, the bulldozer would violate

a warning envelope if its average speed drops below 5 mph, because this is the

speed it must maintain to achieve its goal. Violating this envelope says, 'You can
still achieve your goal, but only by doing better than you have up to this point."
These concepts are illustrated in Figure 3 . The failure envelope is a line from "30
minutes" to "five miles," since the bulldozer can achieve its goal as long as it has at
least 30 minutes to travel five miles. The average speed warning envelope is a line

from the origin to the goal, but the bulldozer violated that envelope immediately by
travelling at an average speed of 3 mph. In fact, it moved perilously close to its

failure envelope. The box in the upper right of Figure 3 illustrates that the agent
can construct another envelope from any point in its progress. In this example,
the new envelope is extremely narrow.
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Figure 3. Depicting actual and projected progress with respect to envelopes

Agent Envelopes and Pian Envelopes. vVe distinguish between the envelopes of
individual agents and those of multi-agent plans. In Phoenix, plan envelopes are
maintained by the fireboss agent, who coordinates several subordinate bulldozers.
Because the environment changes, global plans may be put in jeopardy even if

agents are making progress that, from their local perspective, is well within their
envelopes. Figure 4 illustrates plan envelopes as they are currently implemented
M. Phoenix: The leftmost illustration represents the current state of the fire, its
projected boundaries after one and two hours, and the firelines that three
bulldozers are expected to cut. By projecting where the fire will be, then adding
some slack time, the fireboss anticipates that the last of these lines will be cut an
hour before the fire reaches it. On the right of Figure 4, we see the actual progress
of the fire: After one hour, it has grown less than expected, so the amount of slack
time grows (bottom of Figure 4) and the plan stays well within its one hour slack
time envelope. But during the next hour, the fire grows more rapidly than
expected; so rapidly, in fact, that the slack time envelope is violated. Sometime
during this interval, the fireboss will check the plan envelope and discover that it
is violated. It then replans and typically sends one or more additional bulldozers to
help out.
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Figure 4. A plan envelope for maintaining slack time.

The Utility of Envelopes. A planner can represent the progress of its plan by
transitions within the plan's envelopes. Progress, failures and potential failures
are clearly seen from one's position with respect to envelopes, whereas this
information is not always apparent from one's position in the environment.

Envelopes function as early warning devices in two ways. First, explicit warning
envelopes alert the planner to developing problems. Second, failure envelopes can
tell an agent it has failed long before its allocated time has elapsed. In Figure 3, for
example, the agent knows it has failed as soon as it crosses the envelope. A third
kind of early warning has yet to be implemented: Just as a planner can project the
course of events in its environment, so it can project its progress within its
envelope and, particularly, when an envelope might be violated. A simple
projection method is extrapolation. For example, if we checked the envelope in
Figure 4 after 75 minutes we would see a "downward" trend. By linear
extrapolation we could estimate when the envelope would be violated. Of course,
the downward trend may reverse, or level out. But sometimes it will be worthwhile
to have the projected time of envelope violation despite its uncertainty.

Envelopes integrate agents at different levels of a command hierarchy: A fireboss
agent formulates a goal and a corresponding envelope, and gives them to a

subordinate bulldozer agent with the following instructions: "Here is the goal I
want you to achieve. I don't care how you do it, and I don't want to hear from you
unless you achieve the goal or violate the envelope." The bulldozer then works
independently, not monitored by the fireboss. It figures out where to go, how to

avoid obstacles, and how to keep clear of the fire, until its goal is achieved or its
envelope violated. Meanwhile, the fireboss is free to think about other agents, other
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goals, or to replan if necessary. Envelopes grant subordinate agents a kind of
autonomy, and grant superordinate agents the opportunity to ignore their
subordinates until envelopes are violated.

We have yet to develop cognitive scheduling mechanisms to take full advantage of
envelopes. The design of these mechanisms is motivated by the following
questions: How often should envelopes be checked? Should we adopt a fixed
interval or a dynamic one, and if the latter, what execution methods will
determine when to check next? When should agents project envelope violations
and how should they use the projections? Given that checking a plan envelope, or
projecting progress with respect to it, may involve collecting and integrating
information from the environment and all the participating agents, the cognitive
overhead of of these activities can be considerable and must be carefully scheduled.

5. Methodological Issues.

Our overriding research goal is to develop a sound basis for the design of AI
agents. AI is a kind of design. We don't design graphics, or VLSI circuits, or
mechanical devices: we design intelligent agents. The agents are evaluated by how
they behave. Their behavior is determined by their environments and their
architectures. Once we adopt this view, we see immediately that we do not know
enough about the relationships between agent architectures, behaviors, and
environments (the corners of the behavioral ecology triangle in Fig. 1) to design
intelligent agents in a principled way. For example, we cannot even precisely
define the characteristics of environments (Sec. 2.2), much less behaviors. And we
cannot answer the question, "How would the behavior of this AI program, in this
environment, change if you change its architecture this way: ... ?" But until we
can answer this question, AI system design will remain ad hoc.

In fact, design is one of six research activities implied by the behavioral ecology
model. Here is the complete list:

Prediction: How will behavior be affected by changing the architecture of the
agent or its environment? For example, how will behavior be affected by
changing the size of short-term memory, or by changing the mechanism by
which long term memory is accessed? How will behavior be affected if the
environment "speeds up," so that events that took N seconds now take N/2
seconds?

Explanation: Why does a particular behavior (presumably unexpected) emerge
from the interaction between an agent and its environment? For example,
why does an agent that combines long-term, goal-directed behavior with
short-term reactive behavior sometimes exhibit something like an approach-avoidance conflict---dashing first toward a goal, then away from it, but

getting nowhere in the long run?
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Design. What architectures will produce a particular set of behaviors in
particular environments? For example, what architectilres will ennble An
agent to respond to events in the environment that occur at very different time
scales?

Environment analysis: What aspects of the environment most constrain agent
design? What is our model of the environment?

Generalization: Whenever we predict the behavior of one agent in one
environment, we should ideally be predicting similar behaviors for
agents with related architectures in related environments. In other
words, our theories should generalize over architectures,
environmental conditions, tasks, and behaviors.

Functional relationships: What knowledge do we need to answer
questions in these classes? What are the functional relationships
between the architecture of an agent and its behavior?

Both the behavioral ecology model and the S/E model of Rosenschein, Hayes-Roth,
and Erman (see their paper in this volume) explicitly acknowledge the
relationships between architecture the environment, and behavior. Rosenschein et
al. denote the architecture and environment S and E, respectively; and
characterize behavior as a sequence of state changes called a run. Furthermore,
Rosenschein et al. seem to implicitly subsume, in what they call measurement
and evaluation, some of the research activities above. But because neither the S/E
model nor the behavioral ecology model make predictions, it is premature to
compare them except to note some apparent differences in emphasis.

Rosenschein et al. view the "S/E boundary" as flexible, so that sometimes the
environment can be made responsible for an activity that, in other circumstances,
we might require of the agent. For example, with the general vision problem
currently unsolved, we might construct an environment that "preprocesses"
sensory data for the agent, thus moving the S/E boundary inward, toward the
agent, bypassing the need for sophisticated sensors. This example suggests a
small apparent difference between the SIB model and the behavioral ecology
model: whereas the S/E model seems to assume a simulated environment, the
behavioral ecology model does not. Although the Phoenix project uses a simulated
environment, our principal research tasks (prediction, design, explanation, etc.)
do not presume a simulated environment. It isn't clear yet whether the principal
research tasks of Rosenschein et al. presume a simulated environment.

This raises the methodological question of whether one should use simulations at
all. Some researchers insist that the subtleties of real environments are "lost in
tr aaon t simulated enIIronments. 'jis is to some extent a st~raw man,
because we don't view simulations as accurate representations of the real world.
(In fact, we recently got into trouble by claiming that the Phoenix environment is
an accurate simulation of forest fires.4 ) But it is important to distinguish realism

4See Letters to the Editor, Al Magazine, Vol. 10 No. 4.
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and accuracy. Realism is necessary for our research; accuracy is not. Here are
some examples of the distinction: In a realistic simulation, processes become
uncontrollable after a period of time; in an accurate simulation, the period of time
is the same as it is in the real world. In a realistic simulation, agents have limited
fields of view; in an accurate simulation, agents' fields of view are the same as
they are in the real world. In a realistic simulation, the probabilities of
environmental events such as wind shifts are summarized by statistical
distributions; in an accurate simulation, the distributions are compiled from real-
world data. When possible, we use accurate data; for example, in Phoenix we use
Defense Mapping Agency data of elevation, ground cover, and so on, and the fire
dynamics are derived from U.S. Forest Service manuals (NWCG Fireline
Handbook, 1985). But the goal of our research is not to accurately simulate forest
fires in Yellowstone National Park. It is to understand the design requirements of
agents in realistic environments-en 'ironments in which processes get out of
hand, resources are limited, time passes, and information is sometimes noisy and
limited.

With this in mind, we see that simulations have several advantages:

Control. Simulators are highly parameterized, so we can experiment with
many environments. For example, we can change the rate at which wind
direction shifts, or speed up the rate at which fire burns, to test the
robustness of real-time planning mechanisms. Most important, from the
standpoint of our work on real-time planning, is the fact that we can
manipulate the amount of time an agent is allowed to think, relative to the
rate at which the environment changes, thus exerting (or decreasing) the
time pressure on the agent.

Repeatability. We can guarantee identical initial conditions from one "run" to
the next; we can "play back" some histories of environmental conditions
exactly, while selectively changing others.

Replication. Simulators are portable, and so enable replications and extensions
of experiments at different laboratories. They enable direct comparisons of
results, which would otherwise depend on uncertain parallels between the
environments in which the results were collected.

Variety. Simulators allow us to create environments that don't occur
naturally, or that aren't accessible or observable.

Interfaces. We can construct interfaces to the simulator that allow us to defer
questions we'd have to address if our agents interacted with the physical
world., such as the vision problem. We can also construct interfaces to show
things that aren't easily observed in the physical world; for example, we can
show the different views that agents have of the fire, their radius of view,
their destip.9tions, the patbs they are trying to follow, and so on. The Phoenix
environment graphics make it e, 'y to see what agents are doing and why.

Let us return now to the comparison of the S/E and behavioral ecology models. We
noted that the former model represents behavior as "runs," sequences of state
transitions (or as measures over runs), whereas the behavioral ecology model is
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inspecific about how to represent behavior. On the other hand, the behavioral
ecology model is quite specific about the causal relationships thnt hold nmong the
environment, the agent architecture, and the agent's behavior. The behavioral
ecology model comes from biology; it regards the architecture as analogous to the
genotype and the behavior as analogous to the phenotype. And it assumes that
selection operates on the phenotype. Thus, there is no direct causal link between
an agent's environment and its architecture; rather, the environment ensures
that behaviors are differentially rewarded, so the architecture must be modified to
produce "good" behaviors. This, then, is what we mean by a good architecture-
one that produces behaviors that are good in a particular environment.

It's important to know whether such behaviors can be generated by design, that is,
by intentional modifications to the architecture, or whether they must evolve by
search. Advocates of emergent behavior often take the latter view. They say that
one cannot generate the phenotype from the genotype; one cannot predict how a
moderately complex architecture will behave. This has important practical and
methodological implications for IRTPS. Do we build IRTPS systems "top down," by
assembling components that are predicted to behave in particular ways, and
damn the emergent behaviors? Or do we build them "bottom up," by assembling
components incrementally and empirically, waiting for desired (and undesirable)
behaviors to emerge? In fact, we mix the approaches in proportions determined by
the degree to which behaviors can be predicted from architectures (or components
of architectures). Moreover, this degree of predictability is determined in part by
the desired precision or scale of the predictions. If you want to know the precise
number of cpu seconds that a process will run, you are probably out of luck. But if
you want to know the upper bound runtime, it may be possible. You probably can't
know the exact location of a fire ten minutes from now, but you can certainly draw
a circle that has a high probability of circumscribing the fire. Thus, the question of
whether behaviors can be generated by design depends intimately on how precisely
we want to specify and predict the behaviors.

This brings us to a final methodological issue: evaluation. Let us first ask, What is
being evaluated? Whether an architecture exhibits "timely" behavior? or exhibits a
good tradeoff among several desired behaviors? Whether the behaviors are
exhibited in a sufficiently wide range of environments? Whether we can predict
when the behaviors will and will not occur? Whether we understand the
functional relationships between architecture and behavior well enough to design
an agent that will exhibit desired behaviors in a new environment? All of these
should be evaluated. More pointedly, evaluation cannot stop with the
demonstration that a system "works," however sophisticated the demonstration!

e must tak~e atleast Lwo more steps. We must attempt to show why the solution
works (or doesn't work). This is uncommon, but essential if we are to make
progress as an engineering field. The third step is to show why any solution with
such-and-such abstract characteristics must work (or not work). This requires
models of the behaviors and environments under study.
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5.1 An Example of Design for IRTPS

We will briefly illustrate the previous points, and the terminology in Section 2.2,
with the example of the design of Phoenix's cognitive scheduler. It's current
cognitive scheduler is very weak. We are designing another one that achieves
many of the behavioral goals of IRTPS. In the terms of Section 2.2, this seems to
imply that we should list the problems and inherent problems, describe the
relevent ECs and ACs, and after analyzing how the problems arise out of the
interactions between ECs and ACs, we propose solutions and solution realizations.
In fact, this seems to be an idealization. Instead we start with an informal
description of some problems, and then hunt around for ECs and ACs tl.at we
believe account for the problems. The result is a formal description of the problems
in terms of ECs and ACs. Then we generate solutions and solution realizations.

Here is an example of the first steps.

Informal description: The plan selection mechanism may take too long to find a
plan. As a result, the fire may burn too much area, or may become uncontrollable.
(Note that this is intentionally vague, to show how we formalize the problem
description in terms of ECs and ACs.)

Environment characteristics: What ii going on in the environment that could
contribute to the problem, as informally described above? Let's concentrate on one
thing, the spread of the fire. We want to model this in a way that allows us to firm
up the informal problem description. Suppose we model the spread of the fire as
an exponential process analogous to compound interest and population growth.
Then, the perimeter of a fire after t time units is:

p = pi(1 + r)t

Here, p is the perimeter of the fire, pi is the initial perimeter of the fire, r is the

percentage increase in the fire perimeter every time unit, and t is the number of
time units that have elapsed.

Architecture characteristics. For now, we will list just two characteristics: It
takes a period of time, d, to generate a plan and get the bulldozers to the fire to
begin implementing the plan. And once at the fireline, bulldozers dig at a constant
rate.These are both oversimplifications, bi-.t useful, as we shall see.

Now we can .ay more formally wha; the problem is:
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Figure 5

The curved line represents p, the length of the perimeter, as a function of time. It
begins not at the origin, but at a point that represents the initial perimeter of the
fire (e.g., its size when detected). We assume for simplicity that the steepness of
the curve is described by one parameter, r, which captures factors such as wind
speed and fuel type. Obviously, a more complex model could be generated if
needed. After some delay, d, a plan is detected and some bulldozers are dispatched
and then arrive at the fire. They begin cutting fireline at a constant rate, so the
length of the controlled ",erimeter increases at a linear rate determined by the
number of bulldozers. We show two possibilities, case A and case B.. in case A
(solid line) the bulldozers arrive at the fire sooner, and in greater numbers than in
case B (dashed line). In fact, in case A the fire is controlled, whereas in case B it is
not. We know this because the line for case A intersects the line for the perimeter,
which means that at some point, the length of the controlled perimeter equals the
length of the fire perimeter; or, all the fire perimeter is controlled. In case B, this
doesn't happen.

Before we can rephrase the informal problem description more precisely, we need
to know what affects the parameters represented in the diagram above. This will
tell us what we control as designers, what the system itself controls as an
autonomous agent, and what the environment alone controls.
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p'- This could be reduced if the fire was sighted earlier. The lower
limit on the speed with which the fire is sighted is an AC that we
control. It depends on things like how big a fire must be before it is
noticed, how often the watchtowers look, how long it takes them to
report their findings, how long it takes the fireboss to notice, etc. Most
of these ACs have lower limits that we control, and actual values that
the agent controls.

r - This parameter, which determines the steepness with which the
perimeter increases, is an EC.

d - as with p',we control the lower limit on d, and the actual value is
controlled by the agent.

slopes of "controlled perimeter" lines - this has an upper limit that we
control (by controlling the number of available bulldozers) and an
actual value that the agent controls, by controlling the number of
bulldozers committed to the fire..

At this point, we can begin to give formal descriptions to problems. For example,
what is a deadline? In general, a deadline is a point at which the value of problem
solving changes, usually downward. Consider a hard deadline for the plan
selection process. In the previous diagram, this is represented as an upper limit
on d. Consider three cases, denoted c, d, and e in the following diagram:

case e

case d

case c

S ti t2 cCa

In case c, the slope of the "controlled perimeter" line is shallow because, say, it
corresponds to a plan that involves only two bulldozers. Moreover, the deadline for
the institution of the plan has already passed. You can see this by shifting the line
for case c to be tangent to the "perimeter" line. By the same operation you can see
that, for case d to succeed, the bulldozers (more of them than in case c, hence the
steeper slope) must be at work before t; and for case e to work, they must be busy
by t2. Any delay longer than t1 or t2 shifts the respective lines to the right,
ensuring that they will never intersect the perimeter ine and the fire will never be
controlled.
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Now we can be more precise about the problem: For given values of r and p'
(assuming the fire has just been sighted), find a plan that is expected to contain
the fire and that can be instituted before its deadline.

Note that the original problem, a failure to get plans ready in time, has been
formalized in the context of an agent model and an environment model. Moreover,
a common IRTPS term has been defined in these contexts. One might argue that,
in the process, we have taken a nice, general term like "deadline" and replaced it
with something that is so specific to Phoenix as to be unusable. We believe we have
done exactly the opposite. Not only have we made a vague term precise, but we
have also identified a very general functional relationship or "rule" associated
with the term: Imagine that the perimeter of the fire grows linearly, not
exponentially. Then the notion of deadline illustrated in Figure 5 would not exist.
If a process F grows linearly, and another linearly-growing process B is trying to
control it, then a comparison of the growth rates of F and B will tell us whether B
will succeed, and when it will succeed (assuming the growth rates don't Change).
If B grows faster than F, then it will control F eventually. The only effect of
delaying the onset of B is to delay the control of F. On the other hand, if F grows
superlinearly, as in Figure 5, and B grows linearly, then a delay does not merely
delay the event in which B controls F, it may make that event impossible (as shown
by the dashed line in Figure 5). we believe this is a very general phenomenon, and
thus a very general interpretation of "deadline": A deadline is the point at which a
linear process becomes incapable of catching-at any time in the future-a
superlinear one. Obviously this can be generalized to functions of other orders-a
sublinear process trying to catch a linear one, and so on.

As we evaluate the Phoenix project, we will certainly ask whether it plans in a
timely way, whether it meets deadlines, balances cognitive load, exhibits graceful
degradation, and so on. But the most telling evaluation will be whether we have
been able to engage in the specialization-generalization process illustrated above:
Whether we gave terms such as "deadline" precise interpretations in terms of
Phoenix ECs and ACs and then generalized them again, as we did when we said a
deadline is a point at which one process becomes incapable of catching another.
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Chapter 1

Introduction

The Phoenix testbed' contains four components: A task model, a map representation, a user interface

and a fire simulation. In this document, each component is described conceptually, what is it and how
does it work, and functionally, how is the component used.

The appendices contain a description of the file organization, and installation and maintenance in-
structions.

In a view, the testbed is an environment for simulating processes that need to be synchronized in time.

Each process is called a task. In addition to tasks, the testbed provides a topological representation
of the world. This map contains information about vegetation, roads, rivers and buildings. A user

interface and a forest fire simulation are also provided.

1.1 Simulation and Time

Phoenix provides for the simulation of the world by allowing the user to define tasks which "run the
world." By maintaining a global (between all tasks) notion of time, the system is able to control each

task to make sure that the tasks stay synchronized. Thus, each task can implement a part of the
world, and Phoenix makes sure all the parts are kept up to date. Tasks communicate via shared data
structures and system defined synchronization methods.

A simple example will make this clear. Suppose we want to simulate a world that has forest fires
and firefighters. We can define a task which burns the fire (the simulator), and one task for each

firefighter. The tasks must be synchronized by some global notion of time. In a five minute period,

for instance, the fire can burn only so far and a firefighter can only do a certain amount of problem
solving. The tasks interact by modifying a global data structure, in this case the map of the world.

The simulator burns things, and the firefighters try to contain the fires.

The Phoenm Scheduler is responsible for keeping tasks synchronized. The global clock is called
smulation-time. Each task must provide a method which specifies how siniulation-time passes as
it (the task) executes. There are three distinct types of time in the system:

Simulation Time This is the global shared clock to which each task is synchronized.

Task Time This is the time that each task thinks it is. Imagine that each task has a watch.

CPU time This refers to cpu time for a single task.

'The testbed is implemented in Common Lisp on the Explorer II, a high-performance standalone Lis,) workstation.
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Unless otherwise specified, all time units are measured in tnernal izme units. Finctions are provided to
convert between time units (for example, minutes-.> internal-time and internal-time-.;, seconds).

1.2 The Fire-system

While Phoenix is running, one object handles all requests by tasks, namely, the current instance of
the fire-system flavor. The fire-system flavor contains the user interface, task scheduler, sets of
tasks and the real world representation. It also provides numerous methods for manipulating those
objects. The function fire-system returns the current instance of the fire-system flavor, which we
will call that the current fire system.
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Tasks

Tasks are the organizing component of the Phoenix testbed. A task is a process plus a time-keeping
mechanism. Each task must specify how simulation-time passes as the task's process executes. For
example, a task may say "One second of cpu time corresponds to five minutes of simulation time."
Three types of tasks exist; they differ by the time-keeping mechanisms they use.

CPU-time tasks. In a cpu-time task, simulation-time is a function of cpu time. When you define
such a task, you specify the ratio of simulation time to cpu time. As the task runs, the Phoenix
Scheduler keeps track of time appropriately. For example, the firefighting agents "think" via
lisp code, and their "thinking speed" is set by some ratio of simulation time to cpu time, so that
N cpu seconds of lisp execution is taken to be C. N seconds of simulated real time.

Explicit-time tasks. An explicit-time task is responsible for explicitly telling the scheduler how
much time passed while it ran. For example, if there is a task to move an agent in the world,
that task computes time as a function of speed and distance.

Periodic tasks. A periodic task runs at a fixed time interval. This interval is the task's period.

2.1 Tasks and the Scheduler

The tasks are interleaved on the cpu to simulate parallelism. The Phoenix Scheduler is responsible for
allocating each task the appropriate amount of cpu time. The basic control structure of the scheduler
is:

1. Select the task that should be executed next.

2. Start the task on the cpu.

3. When the task relinquishes control of the cpu, update its task-time. In general, cpu-time tasks
relinquish control whenever there is a cpu timer interrupt (on the Explorer, this means a task
gets at most one cpu second before relinquishing control). Explicit-time and periodic tasks
explicitly return control to the task scheduler.

4. Repeat.

The scheduler updates each task's task-time by an amount computed based on the task's type. A
simple example should illustrate this.

Suppose there are four tasks.

3
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Taski is a periodic task that runs once every three minutes.

Task2 is an explicit-time task.

Task3 is a cpu-time task that runs at 5 minutes/cpu-second.

Task 4 is a cpu-time task that runs at 10 minutes/cpu-second.

When the simulation begins, the task-time for each task is zero. Following is a chronology of what
happens:

Task1 executes at task-time 0 minutes. (This means that irom the task's point of view, 0
minutes has elapsed since the simulation began). After it is done, the scheduler updates
the task-time for Task1 to be 3 minutes.

Task2 executes at task-time 0 minutes. When it relinquishes control, it reports that it
used 7 minutes of simulation-time. The scheduler updates its task-time to be 7 minutes.
Note that it is now "out of sync" with Task, by 4 minutes and Task3 and Task 4 by 7
minutes.

Task3 executes at task-time 0 minutes. After using 1 cpu second, it is interrupted and the
scheduler updates its task-time to be 5 minutes (1 cpu-second * 5 minutes/cpu-second).

Task4 executes at task-time 0 minutes. After using .8 cpu seconds, it is interrupted and the
scheduler updates its task-time to be 8 minutes (.8 cpu-seconds * 10 minutes/cpu-second).

The scheduler maintains a queue of tasks sorted by task-time. The task chosen to execute next is the
task at the head of the queue. The queue currently looks like this (the number is the task-time in

minutes):

Taskj=3, Task3 =5, Task 2=7, Task 4=8

Task1 execute- for three minutes. When complete, its time is incremented by three minutes
(the task's period).

Task3=5, Taskl=6, Task2 =7, Task4=8

Task3 executes and gets .1 cpu-seconds. Its task-time is updated to 5.5 minutes.

Task3=5.5, Task1 =6, Task 2=7, Task 4=8

Notice that each task has its own idea about what time it is (that is, their watches disagree). This
occurs for two reasons. First, we are simulating parallelism on a serial machine. Second, some tasks
represent discrete processes. Given this, the tasks are all out of synchronization by some amount.
The maximum "out of sync" time is the maximum over all tasks of period, explicit time interval
and max cpu quantum - simulation time / cpu time. On the Explorer, the max cpu quantum is I
second.

2.2 Defining and Using Tasks

This section describes how to define each type of task. Examples are given throughout. All tasks
start with the task flavor, that is, to define a task you must first create a new flavor inheriting from
task. You must also write a method which will implement the task and decide what the task's type
is.
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2.2.1 Defining CPU-time Tasks

To make a cpu-time task flavor called generic-cpu-time-task, do the following:

(defflavor generic-cpu-time-task )
(task)

(:default-init-plist
:initial-method :generic-cpu-time-task-toplevel
:schedule-type :cpu-time
:cpu-usec/internal-time (round 1e6 (minutes->internal-time 5))))

This creates a task flavor named generic-cpu-time-task of type :CPU-TIIIE. The ratio of cpu-
time to simulation-time is expressed in cpu-micro-seconds per internal-time unit. In the exam-
ple, the ratio is set to 5 simulation-time minutes per one cpu-second. The method that executes
when the task is run by the system is specified by :IIIITIAL-METHOD. In this case, the method
:generic-cpu-time-task-toplevel must be defined. A cpu-time task normally shouldn't return
control from the initial method once it is called. If it does, the task is deactivated (See section 2.2.4).

Normally, a cpu-time task is interrupted at least once every cpu-second (on the Explorer) and control
is returned to the scheduler. If for some reason you want to explicitly return control to the scheduler,
call swap-in-scheduler. Processing will continue from that point when the task is resumed.

2.2.2 Defining Periodic Tasks

To make a periodic task flavor called generic-periodic-task, do the following:

(defflavor generic-periodic-task ()
(task)

(:default-init-plist
:initial-method :generic-periodic-task-toplevel
:schedule-type :periodic
:period (minutes->internal-time 5)))

This is almost identical to creating a cpu-time task. The differences are : SCHEDULE-TYPE and : PERIOD.
When the scheduler decides to execute a periodic task, it executes the :IIITIAL-IETHOD. When the
method returns, the task-time is incremented by the period, and the task is put back into the queue.

2.2.3 Defining Explicit-time Tasks

To make an explicit-time task flavor called generic-explicit-task, do the following:

(defflavor generic-explicit-task ()
(task)

(:default-init-plist
:initial-method :generic-explicit-task-toplevel
:schedule-type : explicit))

This is almost identical to creating a cpu-time task. Again, when the scheduler runs an explicit-time
task, its : INITIAL-METHOD is executed. When the initial-method returns, the task is rescheduled
(that is, reinserted into the task queue). Sometime during the execution of the method, the instance
variable restart-time must be set to the appropriate time to run this task again. If restart-time
is not reset, an error is signaled. If for some reason the task must restart again at the same time,
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the :initial-method must return :RESTART-OKI At any time during its execution, an explicit-timne
task can return control to the scheduler. To do so, it should set restart-time appropriately, then
call the function swap-in-scheduler. Processing will continue from the point immediately after the
swap-in-scheduler the next time the task is run.

2.2.4 The Task Life Cycle

There are several phases in the life of a task: creation, activation, execution, deactivation and termi-
nation.

Creation

The first thing to do is make an instance of a task with make-instance. When you create a task you
should give it a handle. A task handle is a name (represented as a symbol) that can be used to index
the task. You can also specify an :after :init method to perform instantiation-time actions.

(make-instance 'generic-cpu-time-task :handle 'task-I :name "Task I")

Activation

When a task is created, it is not available for execution. To make it available, you must activate it.

(tsend 'task-1 :activate)

Once activated, a task can be run by the scheduler. You can specify an :after :activate method.
The :activate method is run in the calling process, not the process associated with the task.
If you want a task to be activated at instantiation time, use the :ACTIVATE initialization option
(make-instance task ... :activate T)

The function tsend is like send, except that it takes a task-handle instead of a flavor object.

Execution

All active tasks can be scheduled by the Phoenix Scheduler. Each task runs in its own process.
Execution starts at the task's :INITIAL-METHOD. In a cpu-time task, the method should not return.
In periodic and explicit-time tasks, when the method returns, the scheduler may schedule another
task. These two types of tasks can assume that they won't be swapped until they either explicitly
release control, or the method returns. A cpu-time task may be interrupted any time, at any place in
its code.

Deactivation

A task can be stopped by deactivating it. Once deactivated, it is no longer eligible for execution by
the scheduler. To deactivate a task, send it a :deactivate message. A task can deactivate itself:

(send self :deactivate)

'INTERNAL NOTE: This will be changed to :RESTART-AT-SAME-TIME nt some point. It is more intuitive.
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or be deactivated by some other process

(tsend task-handle :deactivate)

You may specify a :before :deactivate method.

Reactivation

After a task has been deactivated, it may be reactivated again. When a task is reactivated, execution
always begins from the initial-method. All internal state information may be lost. Activation and
deactivation do not correspond to pausing and resuming. Activation is "reset to initial state and begin
execution" and deactivation "stop and clean up." Since a task may be activated and deactivated many
times (the UCL command Reset deactivates then activates all tasks), the : after :activate method
should make sure the task's state is properly initialized, taking into account that the task may have
been run previously.

Termination

At some point, you will want to kill a task. To do so, send the task a :kill message. A task can kill
itself or be killed by some other process. Before a task is killed, it is deactivated if it is active. You
may write :after :kill methods.

2.2.5 Managing Time

The current task-time is available to all tasks, and is returned by the function exact-time. In a
cpu-time task, time is continuously changing, whereas in the other types, time changes in discrete
steps. In cpu-time tasks, the sclheduler computes the task-time.

For periodic tasks, task-time is updated by the task's period each time the initial method is executed.
A periodic task may change its period by setting the period instance variable.

Explicit-time tasks are responsible for updating their own time before the initial method returns.
This is done by setting the instance variable restart-time to be the next time the fask is run. For
example, an explicit-time task could say "Next time my initial-method is started, start it 5 minutes
from now" as follows:

(incf restart-time (minutes->internal-time 5))

Each time an explicit-time task's initial method is started, the task's task-time is set to its restart-time.

All three types of tasks can say, "Put me to sleep for some amount of time." For explicit time and
periodic tasks:

(incf restart-time (minutes->internal-time 5))
(swap-in-scheduler)
;; processing continues here 5 minutes later

For cpu-time tasks:
2

2 INTERNAL NOTE; A function should be written to do the right thing for all types of tasks. In fact, a set of
functions should be written to handle task timing in a totally consistent (for aU task types) manner. To date it hasn't
been a problem because Phoenix does only simple timing. There should be things like sleep-for-time, wake-up-at-time,
etc.
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(setf cpu-time-adjustment (* cpu-usec/internal-time
(minutes->internal-time 6)))

(swap-in-scheduler)

2.3 A Real Example

This section contains an annotated example using four tasks that print informational messages. The
function task-format prints a trace message to the trace pane in the 'process-display' screen configu-
ration. The message automatically includes the task-time and the task's handle. So if the task called
"T-1" at 1:00 P.M. on 8/1 executes

(task-format "Hello there")

the output is

[8/1 13:00 T-1: Hello there]

The first task will be a periodic task that wakes up once every three minutes. This task will keep track
of the number of times it has run in the instance variable count. Notice that the :after :activate
method sets count to zero.

(defflavor periodic-task (count)
(task)

(:default-init-plist
:initial-method :periodic-toplevel
:schedule-type :periodic
:period (minutes->internal-time 3)))

(defmethod (periodic-task :after :activate) ()
;; When this task is activated, reset count to 0.
(setf count 0))

(defmethod (periodic-task :periodic-toplevel) ()
(incf count)

task-format prints a trace message
(task-format "Count is -d" count))

The second task will be an explicit-time task. This task also keeps track of the number of times it
has been called with the instance variable count. Explicit-timie tasks must keep track of their own
time. The first time this task is run it will take one minute, the second time two minutes, then three
minutes, and so on.
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(defflavor explicit-task (count)
(task)

(:default-init-plist
:initial-method :explicit-toplevel
:schedule-type :explicit))

(defmethod (explicit-task :after :activate) ()
;; When this task is activated, reset count to 0.
(setf count 0))

(defuethod (explicit-task :explicit-toplevel) ()
(incf count)
(task-format "Count is -d" count)
(incf restart-time (* count (minutes->internal-time 1))))

The third and fourth tasks will be cpu-time tasks. The difference between them will be their ratio of
task time to cpu time. Since a cpu-time task's initial-method shouldn't return, a lpcal variable can
be used to keep track of iterations. The function 1-second-compute takes exactly one cpu second to
execute (on an Explorer-I!).

(defflavor cpu-task 0
(task)

(:default-init-plist
:initial-method :cpu-toplevel
:schedule-type :cpu-time))

(defmethod (cpu-task :cpu-toplevel) 0
(do ((count 1 (1+ count)))

(nil)
(task-format "Count is -d" count)
(1-second-compute)))

To save time we have already defined these task flavors and methods in the file "PH:TASKS;DOCUMENTED.
TASK-EXAMPLE.LISP". To run these tasks, load that file and start Phoenix.

Once Phoenix is up, select the 'process-display' screen configuration (user typein is shown after a
Phoenix prompt).

Phoenix> process-display

Now we must create the four flavor instances:

(make-instance 'explicit-task :handle 'explicit-task :activate 'T)
(make-instance 'periodic-task :handle 'periodic-task :activate T)
(make-instance 'cpu-task :handle 'cpu-task-i

:cpu-usec/internal-time (round le6 (minutes->internal-time 5))
:activate T)

(make-instance 'cpu-task :handle 'cpu-task-2
:cpu-usec/internal-time (round 1e6 (minutes->internal-time 10))
:activate T)

The first cpu-time task runs at 5 minutes/cpu-second. The second runs at 10 minutes/cpu-second.
The function create-task-demo-tasks (also defined in the DOCUMENTED-ASK-EXAMPLE file)
creates all the instances, so:
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Phoenix> (create-task-demo-tasks)

The simulation begins on August first at 12 noon. To run the system for 16 minutes, type

Phoenix> Run 16

When you start the system running, the scheduler will run each task at the appropriate time. You
should see the output from the calls to task-format in the trace window. The output should start
as follows:

[8/1 12:00 EXPLICIT-TASK: Count is 1]
[8/1 12:00 PERIODIC-TASK: Count is 1]
[8/1 12:00 CPU-TASK-i: Count is ]
[8/1 12:00 CPU-TASK-2: Count is 1]

If everything works correctly, the explicit task will generate output at 12:00, 12:01, 12:03, 12:06 etc.
Each time interval is one minute greater than the previous. The periodic task will count every three
minutes. The first cpu-time task should count in five minute intervals, and the second at ten minute
intervals. The output should continue with:

[8/1 12:01 EXPLICIT-TASK: Count is 2]
[8/1 12:03 EXPLICIT-TASK: Count is 3]
[8/1 12:03 PERIODIC-TASK: Count is 2]
[8/1 12:05 CPU-TASK-I: Count is 2]
[8/1 12:06 EXPLICIT-TASK: Count is 4]
[8/1 12:06 PERIODIC-TASK: Count is 3]
[8/1 12:09 PERIODIC-TASK: Count is 4]
[8/1 12:10 EXPLICIT-TASK: Count is 5]
[8/1 12:10 CPU-TASK-I: Count is 3]
[8/1 12:10 CPU-TASK-2: Count is 2]
[8/1 12:12 PERIODIC-TASK: Count is 5]
[8/1 12:15 EXPLICIT-TASK: Count is 6]
[8/1 12:15 PERIODIC-TASK: Count is 6]
[8/1 12:15 CPU-TASK-i: Count is 4]

When this runs, the output may vary slightly because when two tasks should run at the same time,
the scheduler picks one arbitrarily.

Suppose you want to change the periodic task to run at 6 minute intervals. To do this you need to
change the period and reset the system.

Phoenix> (tsend 'periodic-task :set-period (minutes->internal-time 6))
Phoenix> reset

If you run it again, the period will change. The Reset command sets the clock back to 12:00 and
reactivates all the tasks. Note that if the :after :activate methods weren't specified, the count
would continue from where it left off.

2.4 inputiOutput

Since all tasks run as background processes, doing i/o is not straightforward. For all types of tasks, the
easiest way to do output is with the functions task-format and debug-format. These functions are
similar to format. The difference is that they generate an output message that automatically includes
the task handle and task-time. The output is sent to the process-trace pane. The debug-format
function also sends the output to the Phoenix Lisp Listener pane.
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2.4.1 I/O in Periodic and Explicit-time Tasks

In principle, it is OK to perform any i/o function from periodic and explicit-time tasks. It is
best not to (10 i/o to'from the lisp listener or any window that isn't exposed. Use functions like
w:pop-up-prompt-and-read and utils:pop-up-msg for maximum safety.3 While a task is waiting
for input, no other tasks execute.

2.4.2 I/O from CPU-time Tasks

i/o from cpu-time tasks is particularly difficult because the scheduler can't tell that the task is wait-
ing for input. To do i/o, you should only use functions that have been properly configured with
dont-swapout-function. Currently, it is safe to use the following functions:' 'w: pop-up-prompt-and-read,
tv:careful-notify,'and tv:mouse-confirm. When i/o is done from a cpu-time task, the cpu time
accounting may become slightly inaccurate. i/o should only be done from cpu-time tasks for debug-
ging purposes. This is because any time the i/o takes is charged to the cpu task. This isn't a problem
with the other task types.5

2.5 Debugging

When a task gets an error, the scheduler notices the error and pops up a window that includes the
task-handle, the function where the error occurred and a stack backtrace. To deactivate the task, just
move the mouse off the window. The execution of all the other tasks can be continued. To enter the
debugger, click on the window and an error message will appear on the screen. To select the debugger
for the task, type TERM META-S. It is possible to proceed from the debugger, but it doesn't always
work as expected. The best thing to do is use the debugger to find and fix the problem, and then
Reset and start again.

3Currently, *terminal.io* (and therefore all the other stream variables) are boumd in the task to a deexposed back-
ground window. An error will result if output is directed to it.

4see "PI1:TASKS;SCIIEDULER.LISP" for further details.
INTERNAL NOTE: If the schedulcr could tell if a cpu.time task is waiting for i/o, these problems would disappear.
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Task Reference Manual

*cpu-usec/internal-tme* [ Variable]

*fire-system* [ Variable

Bound within all subprocesses to the current fire-system.

*time-units-per-second* [Constant]

Number of internal time units per second.

i-second-compute (Function]

This takes one cpu-second on an Explorer-II.

1/5-second-compute [Function

This takes 1/5 cpu-second on an Explorer-If.

base-time [Function]

Base time (in seconds).

brief -time-stamp tnternal-tme &optional (stream nil) (current-time (current-time)) [Function]

Prints only those aspects of 'internal-time' which differ from the current time. Never
prints seconds.

continuation-format format-string Vrest args [FunLction)

Like 'label-format' except that no time or task is printed (but space is left for them).
Useful! for continuing 'label-format' messages.

pu-usec- > internal-time usec [Function]

cpu-usec/internal-time->minutes/cpu-sec time [Function]

current-time [Function]

Elapsed time (in internal time!).

debug-format format-string &rest args [Function]

Prints debugging messages to the Lisp Listener pane in Lhe Phoenix system.

estimated-time [Function

Return a quick approximation of the time (in internal time units).

exact-time (Function]

Return the time as exactly as it can be determined (in internal time units).

exact-time-stamp internal-ttme 6optional (stream nil) (base-time (base-time)) [Function]

13
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Prints 'internal-time' in the format [M]M/[D]D [I]:IMM.SS.

find-task handle (Function

Finds the task associated with the handle. This does no error checking.

free-operations Fibody body (Alacro]

Evaluate formis, but don't charge CPU time to the process doing the evaluation.

hours-> internal-time hours [Function]

internal-time- >hours internal-time [Function]

internal-time- >minutes internal-time [Function]

internal-time->seconds internal-time [Function]

internal- time- >useconds internal-time (Function]

kill-process process [Function

Really kill a process, no matter what its state is. Unwinds are handled.

label-format format-string &rest args [Function]

Formats 'format-string' and args on the Pheonix message label pane and tile trace
pane.

label-format? predicate format-string 8trest args (Function]

A conditional version of 'label-format'.

make-message (Function]

message-available-at-time message [Function)

message-channel message [Function]

message-from message [Function]

message-send-time message [Function]

message-text message [Function]

message-type message (Function.]

minutes->exact-internal-time minutes [Function]

minutes-> internal-time minutes (Function]

minutes/cpu-sec- >cpu-usec/internal-time time [Function]

parse-to-internal-time time-string (Function]

Parses 'time-string' into internal-time format.

popup-stop &optional format-string &rest args [Function]

Stop the system immediately from with':, an execution method.

real-time [Function]

Current time (in seconds).

seconds- >internal-t ime seconds [Function]

swap-in-scheduler [Function]

Allow the scheduler to run another task.

swap-in-scheduler-if-necessary task [Function]

Allow the scheduler to run another task unless we are the task that is going to be
run.

:activate (Method of task]
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:after :init &rest ignore (lMethod of task]

:after :deactivate (Method of task)

:closure (Method of task

:cpu-time [Method of task]

:cpu-usec/internal-tinte (Method of task]

:deactivate (Method of task

edit-parameters &optional additional-items [Method of task]

See (:method standard-agent :around :edit-pararneters) to see how to add items.

:handle [Method of task]

:initial-args (Method of task

:initial-method [Aethod of task]

:kill Alethod of task]

Kill a task. The task is deactivated first.

:name [Method of task]

:period [Method of task]

:restart-time [Alethod of task]

:schedule-type [Method of task]

:state f Method of task]

task-active-p task [Function]

Non-nil if the task is active.

task-dont-swapout task (Function]

task-wait wait-string interval fn Vrest args (Function]

Wait until a specific event occurs. The fn is tested every interval in the scheduler
process. The first argument to wait-fn is always the time at which the function is
being called. The function can return T, or the time at which the task should wake

up (maybe past or future)

task-wait-for-interval interval [Function]

Wait until a time interval has passed.

task-wait-until-time time (Function]

Wait until a specific time.

task-format format-string &rest args [Function]

Like 'label-format' except that the task-name and exact lime are also printed.

time-only-stamp nternal-time &optional (stream nil) (base-time (base-time)) [Function]
print-seconds

Prints 'internal-time' in the format [II]H:MM or IH]H:MM.SS if print-seconds is non-
nil.

time-stamp zaternal-ttme &opttonal (stream nil) (base-tme (base-time)) print-seconds [Function]

Prints 'internal-time' in the format [MIM/(DID (lJI:MM or [MIM/(D1D (I I:MM.SS

if print-seconds is non-nil.

tsend task &rest args [Function]

Send a message to a named task.
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us econds- >internal- time usec [Function]

useconds- >minutes usec (Function]

useconds- >seconds usec (Function)
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Phoenix Task Scheduler

The scheduler is responsible for making sure each task gets allocated the appropriate amount of cpu
time. Given the notion of the scheduler queue (from chapter 2) and task-time, the basic algorithm is:

1. Current task = pop(queue)

2. Current time = task-time(task)

3. Allow task to be scheduled on the cpu

4. When either: current task is a cpu-time task and a quantum break occurs (on the Explorer this
happens every second), or the task isn't a cpu-time task and the task relinquishes control (by
changing its restart-time and swapping in the scheduler), disable the task from being scheduled
on the cpu.

5. For cpu-tine tasks increment task-time(task) by the product of the task's cpu-tim e-to-real-time
ratio and the amount of cpu time used between steps 3 and 4.

6. For non cpu-time tasks, set task-time(task) to the the task's restart-time.

7. Insert the task back into the queue. The queue is sorted by task-time (earliest first).

8. Repeat.

When an error occu:s, the scheduler automatically stops to allow debugging (see section 2.5 for
details).

4.1 Scheduler Imnlementation

This section describes the implementation of the Phoenix task scheduler on the Explorer. The sched-
uler is split into two parts. The first is responsible for selecting which task to execute and cnabling
that task. This part is implemented as a simple-process and is responsible for overall control of the
task scheduler. The second part runs every time a process associated with a task gets swapped out
by the Explorer operating system. This occurs when either a timer interrupt occurs (once a second),
or a process explicitly swaps itself out.

17



18 CHAPTER 4. PHOENIX TASK SCHEDULER

4.2 Top Level Scheduler Loop

This section describes the first. part of t1 task scheduler impleinentainn. The schedler is an instance
of the task-scheduler flavor, which provides instance variables for lhe scheduler queue and more.
The scheduler is either running (allowing tasks to run) or stopped (not allowing tasks to run). When
running, it executes tasks until a specific simulation tinie. The queue is a priority queue (implemented
as a heap). The tasks are ordered by task-tinie.

The main loop is as follows:

If stopped, or currently running a task or no tasks available,
do nothing.

If *current-task* is non-iIL Or we're stopped Or the queue is empty
return

Find the next task ready to run. (Since tasks can have a wait
function, it may not be the task at the head of the queue).

Loop
task = head(queue)
If task-time(task) > run-until-time then

stopped = true
return (from main loop)

pop(queue)
If task has no wait function, Or the wait function returns True,

exit loop
;; If the wait function fails, reschedule the task for later
task-time(task) = task-time(task) + task-wait-interval(task)
insert(task, queue)

Endloop
;; At this point, the task can run.
update screen (timestamp and scheduler status-window)
wait-function(task) = NIL
*current-task* = task
start-cpu-time(task) = current-cpu-time(task)
enable(task)

This pseudo-code selects which task to run, then enables it.

4.3 W'hen Processes Swap Out

The second part of the scheduler implementation disables a task's process and manages task-time
accounting. The Explorer operating system has been modified to call the after-task-execution
function every time a process associated with a task swaps out. The pseudo-code for this part is as
follows: (NOTE: process is the process associated with *current-task*)
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;; Allow the debugger to run.
If process is in an error state return
;; Allow i/o.
If *current-task* has disabled swapping (dont-swapout-task(task) = true)

return

If *current-task* is not a cpu-time task
If restart-time(task) has been set or task returned :RESTART-OK

task-time(task) = restart-time(task)
;; Allow another task to be scheduled.
insert(task, queue)
disable(process)
*current-task* = iHL

return
Else

return (allow task to continue)

If *current-task* is a cpu-time task
delta = current-cpu-time(task) - start-cpu-time(task)
If suspend.cpu-accounting(task)

Then task-time(task) = task-time(task) +
cpu.time-adjustment (task)

Else task-time(task) = task-time(task) +
delta*cpuratio(task) +
cpu.time-adjustment (task)

;; A task can tell the scheduler to modify its cpu usage
cpu-time-adjustment(task) = 0
insert(task, queue)
disable (process)
*current-task* = IJIL

If the process was not disabled, the Explorer operating system would continue to execute it. When a

task should be discontinued (for now), the process should be disabled and *current-task* should be
set to NIL (to allow another task to be executed).

It is difficult to tell when a process is in an error state. To do this, we put advice around the function
that enters the error handler.

When a cpu-time task wants to do i/o, it cannot be disabled during the i/o wait. To allow i/o from a
cpu-time task, a task is given the ability to say "don't swap me out." But, when doing i/o, the task
should not be charged for the time it takes a person to enter the input. To provide for this, a task
can suspend cpu time accounting.1 See section 2.4 for more details.

4.4 Portability Issues

How difficult would it be to implement this task model on some other hardware? If each task didn't
have to run in its own process, it would be easy. Unfortunately, this isn't the case because tasks
(especially cpu-time tasks) can be interrupted at any timne and need to save current state on the
runtine stack. The fine-grained process control needed to deal with non-cpu-time tasks is easy,
because those tasks know when they need to be swapped out. Cpu-time tasks are more difficult
because they need to be disabled based on some external event (timer interrupt or the passage of
a specific amount of cpu time). Since these events are operating system dependent, changes may
need to be made to the operating system. I can think of one implementation that will work %%ithout

INTERNAL NOTE: This whole thing can (and should be) cleaned tip.
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operating system modifications. The implementation requires several I hings: the OS works on a
round-robin scheme, each process can enable/disable another process, and each process has access to
the cpu-accounting of another process. The idea is to have a scheduler task with the following loop:

Loop
enable appropriate task
repeat

;; If this can't be done, try sleep(small-amiount-of-time)
Swap out to allow round-robin scheduling to occur.
If *current-task* is cpu-time, disable it.

until *current-task* is disabled
update accounting

Endloop

This partial solution doesn't deal with issues of user interface and shared data.

4.5 Errors and Debugging

Each instance of fire-system has its own scheduler instance. Thus, it is possihle to have more than
one Phoenix running at a time. When the Explorer warm boots, it reinstalls the original version
of the Explorer scheduler. You should not try to run Phoenzz after a warm boot!' If you hear the
"bomb-drop" beep, that means that an error has occurred in the scheduler. To debug this lroblem,
go to the 'process-display' configuration. If you don't want to debug it (more likely), just reset the
system with Reset.

4.6 Programming Interface

It is possible to interact with the scheduler programatically. The function current-scheduler returns
the current scheduler flavor instance. The methods that can be used are described in chapter 5.

2 INTERNAL NOTE. Actually, one minght have rensonable success mising the nst all-task-scheduler function to
reinstall the Phoenix scheduler after a warm boot, but it is not for the fainthearted (or those who have not saved aU
their editor buffcrs).
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Scheduler Reference Manual

*current-scheduler* [Variable]

A pointer to the current instantiation of the Phoenix Task Scheduler.

*current-task* [Variable]

A pointer to the currently executing task.

*previous-task* [Ilariable]

A pointer to the last task executed.

*query-task-errors* Variable]

If non-NIL, errors are handled interactively. The default is T.

*scheduler-error-message* Variable]

Holds the error message when a task error occurs.

*scheduler-error-where* Variable]

Holds the location of the error when a task error occurs.

*scheduler-swapin-count* [Variable]

A counter containing the number of times the Phoenix scheduler runs.

current-scheduler [Function]

Returns the task scheduler of the current fire system.

dont-swapout-function fn [Macro]

Adds advice to the function which prevents it (or more correctly, the task running
it) from being swapped out while it is being run.

in-current-task-p (Function]

Return T if currently executing in *current-task*.

.,,quc-, ah .. .... [elothnd of t sk-schedulerl

:edit-parameters [Afethod of task-scheduler]

:enqueue-task task &optional (time (current-time)) [Aethod of task-scheduler]

:kill [Method of task-scheduler]

Kill the scheduler.

:macro-step-scheduler &optional (n 1) [Method of task-scheduler]

21
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Run the system for 'n' macro steps. If 'n' is NIL, run ii forever.

:reset &rest ignore [Method of task-scheduler]

Set the scheduler to an initial state.

:run n [Method of task-scheduler]

Run the system for 'n' minutes. If 'n' is'NIL, run it forever.

:run-until-time [Method of task-scheduler]

: single-step [Method of task-scheduler]

Run the system for the smallest time interval possible; in other words, run the system
for one internal-time unit or until a task swaps out.

:stop &optional (wait nd) [Method of task-scheduler]

Stop the scheduler.

:trace (Method of task-scheduler]

without-task-swapout &body body [Macro]

Execute 'body' without ever swapping this task out for another task. Code that does
user i/o or grabs locks should be included here.



Chapter 6

Map

Maps in Phoenix represent topographical features for a land area. The features include ground-cover,
elevation, roads, rivers, buildings and fire. The map of Yellowstone is approximately 75 kilometers
square. It ues different representations for the various types of information present. The rest of this
chapter describes these representations with some illustrative examples.

6.1 Map Basics

6.1.1 Units and Positions

All units of distance are represented in meters. A position on the map is represented as a point
data structure. A point structure contains the x and y coordinates of a point in meters. The
position 0,0 is the upper left uf a map. Unless otherwise specified, map access functions take posi-
tions as a point. In general, the values of the x and y coordinates should be integers in the range
(0, 1width - in - meters-] and 10, iheight - in - meters ,] respectively.

To create a point at position x=123 and y=45000:

(setf p (point 123 45000)) ==> (123 . 45000)
(point-x p) -->123
(point-y p) => 45000

The x and y components of a point can be accessed and set with the functions point-x and point-y.
The map reference chapter describes many of the point functions and geometry functions that operate
on points.

6.1.2 Grid Arrays

A grid-array is am array-based representatiUmn Qf a map. Eju h aItrraty ek uinentL LUthlitIS a square
region of the map. The size that an element corresponds to is called the grid-array-size and the
resolution of the grid array is the log of the size to base 2. For instance, the size 256 corresponds to
the resolution 8. If the world is 76,000 meters on a side (as is our Yellowstone inap), a grid-array
representation of Yellowstone at resolution 8 (size-256mneters) is a 300x300 array. At resolution 7.

I Points arc just represented as cons cells, but that doesn't mean you should use car, cdr and cnns to manipulate mr

create them.

23
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the array size is 600x600. Grid-arrays are tN ped arrays. The term cclI is used to denote an element
of a grid-array.

6.2 The Map Representation

A map is represented as an instance of the firemap flavor. There are a large number of functions and
methods that operate on firemaps. The set of functions is deszribed in chapter 7.

6.2.1 Ground Cover

The map representation currently contains 11 types of ground cover. The,, are agriculture (fields),
chapparal, hardwood, lake, marsh, meadow, rocky, softwood, suburban, and urban areas. The eleventh
is named boundary, and is used as a sentinel around the borders of the map. Ground cover is
represented as a grid array at resolution *gc-cell-resolution* (8). So each cell in the ground-
cover map corresponds to an area *gc-cell-size* (256 meters) on a side. Each element of the
grid-array is of type (mod 16). Given a firemap named firemap, the functions cell-ground-cover
and ground-cover-name can be used to access ground cover as follows:

(cell-ground-cover (point 34000 12000) firemap) ==> 3
(ground-cover-name 3) ==> "Lake"

There are eleven constants, each corresponding to the different type of ground cover. *gc-agriculture*.
*gc-boundary*, *gc-chapparal*, *gc-hardwood*, *gc-lake*, *gc-marsh*, *gc-meadow*, *gc-rocky*,
*gc-softwood*, *gc-subuxban* and *gc-urban*.

6.2.2 Elevation

Elevation is represented as a grid array of type (mod 65536) at resolution *elevation-cell-resolution*
(8). Elevations are represented in meters above sea level. Since the elevation data is stored as a grid,
it is necessary to do some form of interpolation to prevent large discontinuities. For example, suppose
the part of the elevation array looks like

30 40 50 ...

44 50 40 ...

45 40 30 ...

Since each cell represents an area of 256 meters on a side, uninterpolated the elevation at (253 . 0)
30, (254 . 0) = 30, (255 . 0) = 30 and (256 . 0) = 40! Notice the discontinuity at the cell boundary.
Phoenix interpolates elevation as follows: Imagine the cell at (0 . 0) from above. The el,!vation at
each corner of the cell is fixed by the elevation data.

30---40

I I
I I

44---50
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Since three points define a plane, a diagonal through the cell defines Iwo planes:

30---40
I /I
I/I
1/ I

44---50

When you ask for the elevation of a position, tlhe elevation is interpolated. This terhnique guarantees
that elevation is continuous over tile entire map (If there are supposed to be disconinnui ties-cliffs-they
are lost). The function cell-elevation returns the interpolated elevation (rounded to meters).

(cell-elevation (point 0 . 0) firemap) ==> 30
(cell-elevation (point 128 . 0) firemap) => 35
(cell-elevation (point 256 . 0) firemap) => 40

cell-approx-elevation returns the uninterpolated value directly from the grid array.

(cell-approx-elevation (point 0 . 0) firemap) ==> 30
(cell-approx-elevation (point 128 . 0) firernap) => 30
(cell-approx-elevation (point 256 0) fireaap) => 40

6.2.3 Roads, Rivers and Buildings

Roads, rivers and buildings are represented as features. Each feature type has a specific width.
Currently there are eleven types of features.

*f-building* Buildings. (8 meters wide)

*f-fireline* Fireline. (4 meters wide)

*f-river128* 128 meter wide river.

*f-river64* 64 meter wide river.

*f-river32* 32 meter wide river,

*f-river16* 16 meter wide river.

*f-river8* 8 meter wide river.

*f-river4* 4 meter wide river.

*f-roadl6* 16 meter wide road.

*f-road8* 8 meter wide road.

*f-road4* 4 meter wide road.

Each feature type has a specific width (,hile not a requirement, feature widths are powers of two for
historical reasons). In the map, features are represented as directed line segments. The feature-edge
structure contains a feature type, start point and end point. Since each feature-edge has a width (the
width of the feature type), the shape of a feature edge is:
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S ....----.... E

Draw a feature edge

A point is on a feature-edge iff the distance from the point to the line segment from the start point
to the end point is less then 1/2 the width of the feature.

Feature types are split into two types: static and dynamic. Static features never change while the
program is running. Dynamic features do change. (Currently, the only dynamic feature is fireline.)
There are several reasons for this separation:

e Firemaps are large. By guaranteeing that some features are static, we can reuse the same static
data structure objects in many firemaps.

9 Space/Time tradeoff. The data structures used to represent static features are large in terms
of space, but extremcL!y fast to index. If each copy of the firemap was large (no data sharing),
this tradeoff couldn't be made. Dynamic features are indexed more slowly, but in a more space
efficient data structure.

o Cleanup. By marking some parts of the map as dynamic, it is easy to reset the map to its initial
state-just clear the dynamic parts.

6.2.4 Static Features

There are two indexing methods for static features. The first method answers the question "What
feature-edge is-at- a specific position in-the map?" The second answers the question "Given a feature
edge, what- are the other 'adjacent feature edges?"

To facilitate the position to feature-edge mapping, a grid array at resolution *feature-cell-resolution*
(8) is used. Stored in each cell is a list of all feature-edges.(containing static features) that touch the
cell in-any way. A feature-edge touches a cell if any part of the rectangle defined by the segment and
width cover any part-of the cell. 2 The question "What feature-edge is at a specific point?" is answered
by searching the list of feature-edges in the -cell- to see if the point is on any edge. This algorithm is
quite efficient. Most cells (90 percent or more) contain no features, so no searching is done, and when
a cell does contain features, there are usually only two or three. To answer the question "Is a point
on a feature?" requires finding the distance from the point to the line segment of the edge. This can
also be implemented very efficiently.

Since it is possible for a point to be on more than one feature, a precedence of features is defined. The
order of precedence is building, roads (wide to narrow), river (wide to narrow). This way, if a road
crosses a-river, a point that is on the road over the river is considered to be on the road.

To answer the question "Given an edge, what edges are connected to it" several data structures are
used. All edges startand-endt a vertex. Eath vertiex contains a position-ard a-poirter to-all'of-the
edges that start or end at that position. Since edges point to vertices and vice versa, it is possible to
follow roads and-rivers. For this-to work properly anytime two edges can only meet dt a vertcz, edges
are-not allowed to cross. So when features are added to the-map, the system automatically creates
vertices at the appropriate- places and splits single edges into-multiple edges. For instance:

2So the circular positions at the edge of the cell aren't included. This isn't a problem because oft he way feature-edges
are connected.
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Before: *=vertex

* ------- & edgel

* ----- edge2

After (add a vertical edge)

* e3

e6 *-...* -. ' el

I e4
e7 ,.. .- . . .* e2

* eS

Adding a single edge of feature results in two existing edges being split into four edges, and the new
edge into three edges. Four new vertices are created.

6.2.5 Dynamic Features

Dynamic features are also represented xuith feature-edges though indexing Ilhem is differet. Instead
of using a grid-array to index features by position, a simple sparse array representation is used. We
use a vector representation for the array.3 To access the list of static-features in a cell at a specific
point:

4

(getf (svref vector (round (point-x point) *feature-cell-size*))
(round (point-y point) *feature-cell-size*))

This saves significant space (a 300 element vector instead of a 300x300 array) at a cost of some speed.
Since there are usually 5-10 firemaps being used at a time (in the current system), we deemed that
this was an appropriate tradeoff. It works reasonably well because (in current applications) the vector
is sparse.

We do not represent vertices for dynamic features. Dynamic feature may intersect at non-end points.
The cost of this decision is that tracing along dynamic features is more difficult; the advantage is that
the cost of creating dynamic features is low.

6.3 Fire

Fire is r presented using a grid-array at resolution 7. Thus, the grain size of a fire is 128 meters. The
element type of the fire grid array can be either: bit , (mod 16) "5, fixnum6 or T.

Currently, there are five fire states. no fire, low fire, :-ot fire, smoldering fire and burned out. These
states correspond to different points in a fire's burn-cyce. Each state is a number, corresponding to

3 1NTERNAL NOTE: A hash table is another possible representation we might want to investigate.
4Actually, instead of round we use (Ish ... *feature-cell-resolut ion*). The use of power of two moth saves a

significant amount of cpu time.
'INTERNAL NOTE: Why isn't thi (mod 8)?
'The use of fixnum instead of (m,.d 24) enables us to use all of the logical number operntions. The drawback is that

it makes the code non-portable because- other Common Lisp implementations might have different length fixnums
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the constants *cs-no-fire* (0), *cs-low-fire* (1), *cs-hot-fire* (2), *cs-smoldering-fire*
(3) and *cs-burned-out-fire* ('I'.

Each of the grid-array element-types can be used to represent fire to differing levels of detail.

bit This type represents either the presence or absence of fire. The absence of fire is *cs-no-fire*:
the presence of fire is *cs-low-fire,-.

(mod 10) With this type each of the five fire states can be represented.

fixnum This type uses the low order bits (four bits) to represent fire state, and the high order bits
to store other information. Currently, the 20 high order bits are used as flags. Functions and
variables can be used to mask out the high and low order bits.

T With element type T, the data in the grid-array is either a fixnum as above, or an instance of
a fire-info structure. Fire-info structures are used by the fire simulation. This structure
contains a fixnum (fire-state) as above, and information used by the fire simulation such as the
ignition time of cell.

When you create instances of a firemap, you can specify what element type the fire grid-array should
be, or specify that a fire array shouldn't even be created.

6.4 Creating and Editing Firemaps

To create a firemap, create an instance of the firemap flavor. When a firemap is create(], the new
map shares information about ground cover, elevation and static features from a default firemap
(*default-firemap*). The default firemap is a map of Yellowstone National Park. Firemaps can be
read and written from disk, edited and examined. Care must be taken when editing maps because all
maps have common data-structures. Each map gets its own set of dynamic features (initially empty)
and fire representation. When instantiating a map, the type (if any) of the fire representation should
be specified.

;; create a map of Yellowstone with a bit fire representation
(make-instance 'firemap :fire-element-type 'bit)

;; create a map of Yellowstone with no fire representation
(make-instance 'firemap :fire-element-type IlL)

;; create an empty map, and then fill if from a disk file
(setf map (make-instance 'firemap :initialize-from IIlL))
(send map :load-map "map-filename")

The firemap creation options are described in chapter 7.

When a firemap is no longer needed, it is best to reclaim the memory used by the map (theN are
large) by sending it a :deallocate message. In order to return a map to its initial state (no fire, no
dynamic features), send it an :erase-fire message.

The basic map access functions are:

cell-ground-cover point map returns the ground cover as a number (eg., the value of *gc-hardwood*).

cell-elevation point map returns the interpolated elevation in meters.
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cell-feature point map returns the feature at point as a number (eg., the value of *f-road4*) or
Niil if there is no feature.

cell-fire-state point map returns the fire state as a number. The type nf the number depends nn
the fire element type. If the fire element type is T and the cell contains a fire-info structure,
the fire state from the structure is returned as a fixiiun.

Some access functions are implemented as functions, some as methods, and some as both. The choice
of technique to use for each is based on efficiency, convenience and style.

6.5 The Real World Firemap

There is one firemap which is used to represent the "real world". When tasks look into the world,
they should look into the real world firemap. The function real-world-f iremap returns that map.
Tasks can change the "real world." A typical change is the placement of fireline (this should be done
be sending a message to fire-system rather than real-world-f iremap).

6.6 Geometry

Phoenix provides many functions for geometric reasoning over the map. These functions range frnm
simple unit conversions to basic geometry (do two line segments intersect?) to region-growing algo-
rithms. Chapter 7 describes these functions.
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Chapter 7

Map Reference Manual

7.1 Firemap Flavor

f iremap-dynamic- edges firemap [Function]

dynamic-edges [Me thod of f iremap]

f iremap-edge-vector firemap fFunction)

edge-vector [Mlethod of f iremap]

f iremap-elevation firemap [Function)

elevation [Mfethod of f iremap)

f iremap-f ilename firemap [Functionl

filename [Mlethod of f iremapi

f iremap-f ire firemap [Function]

:ire [Meichod of f iremap]

f iremap-f ire-extents iremap [Function)

:ire-extents [Mlethod of f iremap]

f iremap-f ireniap-windows iremap [ Function]

firemap-windows [Mlethod of f iremap]

f iremap-ground-cover firemap [Function]

ground-cover [Aleihod of f iremap]

f iremap-obj ect s-to-di splay firemap [ Function]

:objects-to-display [Mlethod of f iremap)

f iremap-static-edges iremap [Function]

static-edges I~fethod of t iremapi

f iremap-update-wimdows firemap [Function]

:update-windows [Mlethod of f iremap]

f iremap-vertex-vector firemap (Function]

vertex-vector [Mlethod of f iremap]

31
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7.2 Map Definitions

7.2.1 Elevation

*elevation-cell-resolut ion*' (Constant

*elevation-cell-size* [Constant]

Size of elevation grid cell side (in mneters).

7.2.2 Fire States

*cs-burned-out-fire* [Constant]

*cs-low-fire* [Constant]

'*cs-hot-fire* ( Constant]

*cs-riask* (Constant]

*cs-no-f 're* [Constant)

*cs-srnoldering-fire* [Constant]

*fire-cell-resolution* (Constant]

*fire-cell-size* [Constant]

Size of fire grid cell side (in mneters).

*fire-names* (Variable)

*fs-features-present* (Constant]

*fs-ignitable* (Constant)

*f s-mask* [Constant)

*fs-not-ignitable* (Constant)

*number-of-fire-states* [Constant]j

def f ire symbol number name &~key color-character b~h-character color (Mfacro]

f ire-name fire-state (Function]

Returns a string wvhich describes cfire-state'.

7.2.3 Fire Info

allocate-f ire-info [Function]

f ire-burn-state f [Mfacroi
Return the burn state from a fire-info fixnuin. Ics-no-fire' ->cs-burned-out-fire*

f ire-f lag- >number fs [Function]

f ire-f lags f (Mlacro]

Returns the flag part of a fire-info fiximim.

f ire-inf o-burn-state fire-info (Mlacro]

f ire-inf o-change-time fire-info (Function]

f ire-inf o-ignite-time fire-info [Function]

f ire-inf o-point fire-info (.Function]
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f ire-inf o-state fire-info (Function]

f ree-f ire-inf o arg (Function]

f irep f [Macroi

Return T if there is fire in a fire-info fixniim (inc lud1es *cs-bnrnecl-out-fire*).

ignitable-p f [Mlacro]

Returns T if there is 110 fireline in a fire info cell.

live-f ire-p f (Macro]

Return T if there is live fire in a fire-info fixnum (does not include *cs-burned-out-

not-ignitable-p f [Macro]

Returns T if there is fire line in a fire info cell.

7.2.4 Features

*all-features-flag* [Constant

*dynamic-feature-flags* [(Variable]

*f-building* (Constant]

*f-fireline* (Constant]

*f-riverl28* [Constant]

*f-riverl6* (Constant]

*f-river32* [Constant

*f-river4* [Constant]

*f-river64* [Constant]

*f-river8* [Constant]

*f-road16* (Constant]

*f-road4* [Constant]

*f-road8* [Constant]

*feature-cell-resolution* [Constant]

* feature-cell-size * [Constant]

Size of feature grid cell side (in meters).

*feature-names* [Variable]

Array of feature names.

*feature-overlay-order* Vlariable)J

The precedence of features.

*feature-widths* [Variable]

Array of feature widths (in meters).

*number-of-features* (Variable]

*point-feature-flags* (Variable]

*river-flags* (Variable]

'*road-flags* fVariable)
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Iroad-or-uncrossable-river-flags* IVariable]

*static-feature-flags* [Variable]

*uncrossable-river-flags* Variable]

def feature symbol name number wzdth C6key roadp rzverp uncrossabic-rivor-p b~w-characte4MAacro]
color-characeter dynam icp color bF~w minimum- display-size pointp

f eature-name feature [Function]

f eature-width feature (Function]

roadp feature [Function]

riverp feature [Function]

7.2.5 Ground Cover

*gc-agriculture* [Constant]

*gc-boundary* [Constant]

*gc-cell-resolution* [Constant]

*gc-cell-size* [Constant]

Size of ground cover grid cell side (in mieters).
*gc-chapparal* [Constant]

*gc-hardwood* [Constant]

*gc-lake* [Co nstant]

*gc-marsh* [ Constant]

*gc-meadow* (Constant)

*gc-rocky4 [Constant]

*gc-softwood* [Constant]

*gc- suburban* [Constant]
*gc-urban* [Constant]

*ground-cover-nanes* [Variable]

*ground-cover-types* [Variable]

*number-of-ground-covers* [Variable]

burnable-ground-cover-p ground-cover [Function]

def ground-cover symbol number name Fikey type color bWw [Mlacro]
ground- co ver-name gc [Function]

ground-cover-type gc [Function]

vegatation-ground-cover-p gc [Function]

7.3 Map Access Functions and Methods

defmapfn slot &key (slot-postfix slot) (resolution (quote 'gc- cell- resolution*)) [Macroi

Define a set of mnap slot access functions at a specific resolution. Specifically, thiis
dlefines a standard "point" reader: CEILL-{SLO'r} <point> <niap> a "xy" reader
CELL-{SLOT}-X-Y <x> <y> <miap> and a standard "point" writer function which
is also the setf mnethod for thme standard reader. If 'slot- postfix' is specified it is used
in plIace of 'slot' to generate the function naines.
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7.3.1 Elevation

cell-approx-elevation point map [Function]

cell-elevation point map [Function]

Find the real elevation of a point to the nearest nier.

:highlight-elevation el &optional (range 0) [Method of firemap]

: set-cell-elevation point new-elevation [Method of firemap]

7.3.2 Features

cell-boundary-crossed-multiply-by-features-p point resolution firemap Voptional [Function]
(features 'all-features-flag ")

Return T if the cell boundary is crossed more than once by features.

cell-dynamic-edges point map [Function]

cell-dynamic-feature point map (Function]

cell-dynamic-feature-edge point map [Function]

Return the line feature edge under 'point'.

cell-dynamic-features-in-area point map resolution [Function]

Return the set of dynamic features at 'point' and 'resolution' as a fixnum bit-array.

cell-feature point map [Function]

: cell-feature point [Method of firemap]

cell-feature-edge point map [Function]

cell-feature-flag point map [Function]

cell-features-in-area point map resolution [Function]

cell-static-edges point map [Function]

cell-static-feature point map [Function]

Return the feature under point.

cell-static-feature-edge point map [Function]

Return the line feature edge under point.

cell-static-features-in-area point map resolution [Function]

Return the set of static features at 'point' and 'resolution' as a fixnum bit-array.

:create-static-edge from-point to-point type &kcy (refresh t) [Method of firemap]

Create a static edge between the specified points. If the new edge intersects any other
edges at a non-vertex, create a new vertex at that intersection point.

:delete-edge edge ikey (refresh t) [Method of firemap]

Delete an edge.

:delete-edge-from-array edge [Method of f iremap]

Delete a static edge from a firemap.

:delete-point-edges [Method of f iremap]

Delete all edges that start and end at the same vertex.

:delete-point-feature-near-point point &rest ignore [Method of f iremap]
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Delete a feature near point

dynamic-edge-exists-p from to firemap (Function

find-edge-nearest-to-point point within-distance [Mcthod of f iremap]

Find the edge closest to point within a certain distance.

find-point-on-some-feature-in-cell cell-point resolution feature-flogs map [Function]

Pick a random point on a feature that matches feature-flags in the cell.

:find-vertex-at-point point &key (create nil) (Method of firemap]

find-vertex-nearest-to-point point within-distance (Method of f iremap]

Find the vertex closest to point within a certain distance.

fireline-in-cell-p point firemap resolution [Function)

:place-dynamic-feature from to type [Method of firemap)

Draw a dynamic feature of type from point to point.

:place-edge-in-array edge [Method of f iremap]

Insert a static edge into the firemap.

:place-static-edge from-point to-point type &key (refresh t) [Method of firemap]

Create an edge of type from point to point. Vertices are created at tile endpoints if
necessary. The new edge should NOT intersect other edges (except at endpoints).

point-on-feature-of-type-p point firemap feature-flags [Function]

Return the feature if point is above a feature of a specified type.

point-on-lake-p point map [Function]

point-on-road-p point map [Function)

river-in-cell-p point firemap resolution [Function]

road-in-cell-p point firemap resolution [Function]

7.3.3 Ground Cover

cell-ground-cover point map [Function]

:cell-ground-cover point [Method of f iremap]

: set-cell-ground-cover point cover [Method of firemap]

7.3.4 Fire

cell-fire point map [Function]

cell-fire-burn-state point map [Function)

Return the burn state at a point in a map.

cell-fire-burn-state point (Method of firemapi

:cell-fire-display-info point (Method of firemap]

Return three values; state, change-time, ignite-time.

cell-fire-flags point map [Function]

Return the fire flags for a cell.
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cell-fire-info-structure point map IFunction
Create a fire-info str-cture, or return the existing one for point in map.

cell-fire-state point map [Function]

Return the ftll state and flags at a point in the map.

cell-ignite-time point [Function)

Return the ignite time of a cell. Return most-positive-fixnm if not known.

:erase-f ire &optional confirm (refresh t) [Method of firemap]

Reset tile map to a nice, clean, no-fire state. 'This really should be called :reset-all-
dynamic-edges.

:ignite-cell &rest args [Method of firemap

:update-cell-f ire point new-state Voptional old-state [Method of firemap]

:set-cell-f ire-burn-state point Voptional (new-state 'cs-low-fire") [Method of firemap]
(refresh t)

:set-cell-f ire-state point &optzonal (new-state 'cs-low-fire') (refresh t) [Aethod of firemap]

7.4 Other Firemap Variables and Routines

*default-firemap* [Variable]

Default-firemap for ground cover and elevation.

*default-map-file* [Variable]

*height-in-meters* [Constant]

*width-in-meters* [Constant

all-f iremaps [Function]

: check-for-non-vertex-intersections [Method of firemap]

See if there are any interesections that don't meet at a vertex.

:deallocate [Method of firemap]

Return the grid arrays.

:delete-window window [Method of f iremap]

:draw-objects [Method of f. remap]

:load-map Voptional file confirm [Method of f iremap]

real-world-firemap [Function]

Returns the real-world-firemap of the current fire system.

: rebuild-vertex-and-edge-vectors [Method of firemap]

Given a firemap static-edge-vector, construct a new vertex vector and clean tip the
edge vector. Vertices and vertex numbers are recomputed from scratch. Everything
is recomputed from just the edge-type, start-point and end-point.

:refresh [Method of firemap)

:save-map Voptional file confirm [Method of firemap]

:validate-vertex-and-edge-vectors [Method of firemap]

Do some consistency checking over features.
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7.5 Grids

grid-array-aref array z y resolution [Function]

Use 'x' and 'y' as indices into a grid array. Can be used with 'setf'.

grid-array-ref array point resolutzon [Function)

Use 'point' as an index into a grid array at the specified resolution. Can be used with
'setf'.

set-grid-array-aref array x y resolution value [Function

Use 'x' and 'y' as indices to set an element in a grid array.

set-grid-array-ref array point resolution value [Function

Use 'point' as an index to set an element in grid array at the specified resolution.

truncate-to-grid n (Macro]

7.6 Vertices and Feature Edges

copy-feature-edge object (Function]

edges-meet-at-vertex-p el e2 (Function]

Return true if the edges share a vertex.

edge-cell-list edge resolution (Function)

Return a list of the cells touched by edge. Each cell is returned only once. The order
is random.

edges-in-area edges point resolution [Function]

f eature-edge-bot-point-from feature-edge [Function]

f eature-edge-bot-point-to feature-edge [Function)

f eature-edge-cen-point-from feature-edge [Function]

f eature-edge-cen-point-to feature-edge [Function

feature-edge-from-point feature-edge [Function]

feature-edge-from-vertex feature-edge [Function]

feature-edge-index feature-edge [Function]

feature-edge-length feature-edge [Function]

feature-edge-p object [Function)

feature-edge-plist feature-edge [Function]

feature-edge-to-point feature-edge [Function]

f eature-edge-to-vertex feature-edge [Function]

feature-edge-top-point-from feature-edge [ Function

feature-edge-top-point-to feature-edge [Function)

feature-edge-type feature-edge [Function)

feature-of-type-in-area-p point firemap feature-flag3 resolution (Function]

find-point-on-edge-in-cell edge cell-point resolution [Function]
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Given an edge, return some point on that edge within a McI. If tile edge doesn't enter
the cell, return NIL.

point -dis tance-f rom- edge- squared point edge [Function]

Return the square of Lte distance fromn the edge cciii erlinc to point.

point-on-edge-p point edge [Function]

Return T if point is on edge.

type-of-connection-between-vertices vi v2 [Fun ction]

vertex-edges vertex [ Function]

vertex-index vertex (Fun ction]

vertex-p object [Functio n]

vertex-point vertex [Function]

7.7 Conversion Functions

*feet-pe'-km* [Constant])

*km-per-mile* [Cons tant)

*meters-per-chain* [Constant]

chains /hour-> meters/ int ernal- time n [Function]

chains /hour-- >met er s/minute n [Function]

chains/hour->meters/second n [Function]

chains->kip chains (Function]

chains->meters chains (Function]

degrees- >radians degrees (Function]

km->f eet kin [Function]

km->miles km [Function)

km/hour->metsrc/i: ternal-time n [Function]

km/hour->rneters/sec and kmn [Function]

miles->km miles (Function]

7.8 Geometry Functions

*essantially-zero-threshold* (Varin blcj

To test if a point is on a line, we finch its distance from the line and if it's essentiallv
zero [it miight be iion-zero due to round-off errors], we deem it to be on Lte line. This
nuimber sets the threshold for being essentially zero.

angle-between-points p1 p2 (Functon]

Return the angle of Lte !;ector front 1pi to p2 (in radianis).

area-of -triangle p0 p1 p2 (Function]

Return the area of the triangle p0 p1 p2 .

average-point new-point &rest points [Function]



40 CHAPTER 7. MAP REFERENCE MANUAL

Computes a new [rounded] point which is the average of some points.

cell-center-point cell-point resolution (Function]

Return the center point of a cell at resolution.

center-point point [Function]

copy-extent object [Function]

create-extent Vkey upper-left lower-right (Function]

direction vector [Function]

exact-point-separation pl p2  [Function

Return the distance between two points as a floating-point number. Since points
range from [0,0] to [8000,8000], the result is accurate to within +/- I meter.

extend-segment pO pl extend-amount &optional (extend-to (point)) (Function]

Extend the segment from 'p0' to 'pl' by 'extend-amount'. Returns the new segment
end (pl rounded to meters.

extent-intersection ull lrI u12 Ir2 [Function]

Given two extents, return their intersection.

extent-lower-right extent (Function]

extent-p object [Function]

extent-upper-left extent [Function]

half-line-intersects-segment-p 10 11 sO sl [Function]

Returns T if" the half-infinite line [aka the ray] starting at LO and going through LI
inte rsects the segment [SO,SI].

magnitude vector [Function]

make-extent point [Function]

make-vector direction magnitude [Function]

Create a vector. 'Magnitude' and 'direction' should be regular floats.

nearest-point-on-segment pozntj line-ptl line-ptk [Function]

Find the point on the segment defined by 'line-ptL' 'line-ptK' nearest to 'pointJ'. The
returned point may be 'eq' to a segment end point.

point &optional (z nil x-specified) y (setpoint nil setpoint-specified) [Function]

Make a new point using 'x' and 'y'. If'setpoint' is specified it is destructively modified
and returned.

point-at-resolution point resolution [Function]

Make a copy of a point at a specific resolution.

point-at-resolution* point resolution [Function]

point-at-resolution-with-offsets pl p2 resolution [Function]

Return a point in the same cell as pt with the same offsets as p2.

point-difference pl p2  (Function]

Return pl - p2.

point-difference* pl p2  [Function]

Return p1 = pt - p2.
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point-distance-from-extents test-point upper-left lower-right &Joptional (solid? t) [Function]

This returns the distance between a point and a rectangle specified by 'upper-left'
and 'lower-right'. The rectangle may be solid; if it is and the point lies inside it, the
returned distance is negative and is the distance from the point to the edge of the
rectangle.

point-distance-from-segment-squared pointj line-ptl line-ptk [Function]

Copied from Bowyer & Woodark, pg. 47.

point-distance-from-square test-pont square-origin size &optional (solid? t) [Function

This returns the distance between a point and a rectangle specified as an origin and
a size. The rectangle may be solid; if it is and'the pc t ies inside it, the returned
distance is negative and is the distance from the point to the edge of the rectangle.

point-distance-squared-from-star-polygon point star-point polyli,.e [Function

Return 0.0 if the point is in the polygon, or the distance squared from the point to
the polygon.

point-extent-sector-code point extent [Function]

point-in-bounds-p point [Function]

point-in-extent-p point extent [Function]

Return T if point is within the extent.

point-in-star-polygon-p point star-point polyline [Function]

point-left-of-line-p point pO pl [Function]

Determine if 'point' is in left half-plane defined by the directed line segment.

point-on-line-p point pO pl [Function]

Determine if 'point' lies along line defined by segment.

point -on-segment->parameter pO pl point &optional error-check? [Function]

If POINT is on the segment [P0,P1], returns the parametric specification of POINT.
Actually, this works for any point on the half-infinite line [ray] from P0 through PI
to infinity. If POINT is on the line but not on the ray, the parameter returned is the
negative of the correct answer; that is, the correct answer is negative, but the answer
returned is the absolute value of the correct answer.

point-right-of-line-p poit pO pl [Function]

Determine ;f 'point' is in right half-plane defined by the dire.ted lipe segment.

point--rotate-around-point theta rotate-point around-point [Function]

point-rotate-origin theta pt [Function]

point-rotate-origin* theta pt [Function]

point round point [Function]

Rounds POINT. Returns a new point.

point-round* point [Function

Rounds POINT. Destructively modifies POINT.

point-sector-code point top-left bottom-right [Function

point-separation pl p2 [Function]

Return the distance between the two points + I- 1 meter. Use exact-poi t-sepatation
if necessary.
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point-separation-and-sin-cos pl p2 [Functzonj

Find the distance between points. Return the sin and cos of the angle between them.

point-separation-lessp pl p2 distance [Function]

Return T if distance between pl&p2 < distance.

point-separation-squared pl p2 [Function]

Return the square of the distance between the two points. The result is a single-
precision floating point number.

point-sum pl p2  [Function

Return P1 + P2.

point-sum* pl p2 (Function)

Return P1 = P1 + P2.

point-wrt-line point pO pl (Function

Return 0 if 'point' is on the line, < 0 if left, > 0 if right.

point-x point [Function)

point-y point iFunction]
point= p1 p2 [Function]

pointp , oint [Function]

points-in-same-cell-p pl p2 resolution [Function]

Return T/NIL if the two points share the same cell at the given resolution.

polyline->segments polyline &key (closedp t) [Function]

Converts a polyline into a list of segments [represented as a list of two points].

polyline-intersects-cell-p polyline point resolution [Function

Returns T iff some segment of POLYLINE goes through the cell of size RESOLU-
TION containing POINT.

polyline-length polyline &lkey (closedp t) [Function]

quick-segment-intersects-cell-p pO pl cell-point resolution [Function]

True if" the segment [PO,PI] passes thiough the cell containing CELL-POINT at
RESOLUTION. Returns the point [rounded] where the segment intersects a diagonal
of the cell. [BUG: fails if the segment ends inside the cell without intersecting a
diagonal.]

radians->degrees rad [Function]

rounded-point-p point [Function

same-side-p line-ptl line-pt2 point1 point2 [Function

Return T if 'pointl' and 'point2' are both in the same half plane determined by
'linepl' and 'linep2'.

segment&parameter->point pO pl parameter [ Function]

Given a segment and a parameter, return a point on the segment. The point is not
rounded.

segraent&parameter- >point* pO pl parameter [Function]

Given a segment and a parameter, return a point on the segment. The new point is
not rounded and is returned in P0.
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segmentparameter->pointl* pO pl parameter [Function)

Given a segment and a parameter, return a point on the segment. The point is not
rounded and is returned in p1.

segmentparameter- >point2 pO pl parameter p2 [Function]

Given a segment and a parameter, return a point on the segment. The point is
rounded and is returned in p2.

segment-cell-intersection pO pl ccll-point resolution [Function]

Return the first intersection point of the segment [P0.P I with the cell containing
CELL-POINT at RESOLUTION. If there is no intersection, returns NIL. The re-
turned point isn't rounded. Caution: The border of a cell is defined by four seg-
ments, the North, South, East and West edges. Points on the North and West edges
are *in* the cell, while points on the South and East edges are *not* in the cell; they
are in the cells to the South and East, because those same segments are the borders
of other cells, and each point can only be in one cell. Essentially, the points *in* a cell
are (x,y), such that CELL-SIZE = 2-RESOLUTION FLOOR[x/CELL-SIZE] <= x
< FLOOR[x/CELL-SIZEI+CELL-SIZE and similarly for y. Note the <= versus the
<. See SEGMENT-CELL-INTERIOR-INTERSECTION for an alternative function.

segment-cell-intersection-parameter pO p1 cell-point resolution [Function]

Return the parameter corresponding to the first intersection point of the segment
with the border of the cell. This point is not guaranteed to be in the cell, since
the North and West borders of a cell are in the cell, while the South and East
borders are not-they belong to tle cells to the South and East, respectively. See
SEGM ENT-CEbL-i.";TFRIOR-INTERSECTION-PARAMETER for an alternative
function. In more detail: The border of a cell is defined by four segments, the
North, South, East and West edges. Points on the North and West edges are *in* the
cell, while points on the South and East edges are 'not* in the cell; they are in the
cells to the South and East, because those same segments are the borders of other
cells, and each point can only be in one cell. Essentially, the points *in* a cell are
(x,y), such that CELL-SIZE = 2-RESOLUTION FLOOR[x/CELL-SIZE <= x <
FLOOR[x/CELL-SIZE+CELL-SIZE and similarly for y. Note the <= versus the

segment-ce3 1 interior-intersection-parameter pO pl cell-point resolution [Function]

Return the parameter corresponding to the first intersection point of the segment
with the points *in' the cell. This point *is* guaranteed to be in the cell. See
SEG M ENT-CELL-INTERSECTION-PARAMETER for an alternative function.

segment-edge-intersection-parameter pO p1 edge [Function]

segment-feature-border-intersection-in-cell pO pl cell-point resolution featureflags[Function]
map
Return the first intersection point of the segment with the border of an edge of type

'featureflags'. The returned point is not rounded.

segment-feature-centerline-intersect ion- in-cell pO pl cell-point resolution [Functioni
featureftags map
Return the intersection point of the segment with the centerline of an edge of type
'featureflags'.

segment-intersection pk pl pm pn [Function]

Return the point of intersection or nil. Copied from Bowyer & Woodwark.

segment-intersection-parameter pk pt pm pn IFunrtioni
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Return the parameter of intersection on the segment WPk.Pl]. If the segments don't
intersect, return NIL. If the segments are coincident, an endpoint of fPm,Pn] that is
on [Pk,PI] is returned.

segment-intersection-parameters pk pl pm pn [Function]

Return tile parameters of the intersection of the lines dlitrmined by segments [Pk,Pl]
and [Pm,Pn]. The first value is the parameter on [Pk.P], the second on (Pin,Pn]. If
the segments intersect, both parameters will be between 0 and 1, inclusive. If the
lines do not intersect, NIL is returned. If the lines are coincident, the correct result
is calculated.

segment-intersects-cell-p pO pl point resolution (Function)

Returns T iff the segment [P0,PI] goes through the cell of size RESOLUTION con-
taining POINT.

segment-intersects-edge-type-in-cell-p start finish cell-point flags map [Function]

Return T iff the segment from start to finish intersects an edge with flags within
cell-point.

segment-side-segments pl p2 width &optional (slO (point)) (sli (point)) (s20 (point)) [Function]
(s21 (point))

Return the two segments on the boundary of the argument segment (rounded).

segment-to-implicit-line pk pl [Function)

Given a line segment, return the implict form Ax + By + C = 0.

segment-to-parametric-line pO pl [Function]

Given a segment, return the parameters of the line x = Xo + Fs y = Yo + Gs.

segment-touches-edge-p pO pl edge [Function]

Return T if the segment from p0 to pi comes in contact with edge.

segments->polylines segments [Function

Converts an unsorted list of SEGMENTS, each represented as a list of two points,
into a list of polylines by joining segments.

segments-intersect-p pk pl pm pn [Function]

Return the point of intersection or nil. Copied from Bowyer & Woodwark.

set-point-x point value [Function]

set-point-y point value (Function)

vector-end-point start-point angle radius Voptional (end-point (point 0 0)) [Function]

Given a vector specified by 'start-point', 'angle' and 'radius', calculate and return an
endpoint.

xy-segment-to-implicit-line xk yk xl yl [Function)

Given a line segment, return the implict form Ax + By + C = 0.

xy-segments-intersect-p xk yk xl yl xm ym xn yr (,Function)

Return the point of intersection or nil. Copied from Bowyer & Woodwark.
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7.9 Iteration Constructs

*circle-neighborhood-radius-index* [Variable

*circle-neighborhoods* Variable]

*fire-neighborhood* I Variable]

*square-neighborhood* [ Variable]

do-feature-edges (edge cell-point map 6key feature-flags (edge-type :both)) &body body [Macro]

Iterate over all edges in a cell matching feature flags. edge-tvpe is either :both (de-
fault), :static or :dynamic. Body is repeated for both types of edges if necessary.
Dynamic features are done first. A (return) will get you out of the current edge type
loop, not the do-feature-edges loop!

do-point-set (point seed-point &~key (resolution (quote 'gc-cell-resolution')) (Z (gensym)) [Macro]
(y (gensym)) visited-point-bitarray) (6rest finish-forms) &body body
Iterate over a bunch of points. Body adds points to the set of points, do-point-
set guarantees that each point is visited only once. Use the macro (visit-xy x y)
or (visit-point point) to add a point to the set to visit. Body is executed until the
set of points is empty. Point can be modified by body, but its value is changed
each time through the loop (so use copy-point to keep the point around). Visited
points are remembered at the specifed resolution. This also defines the macro (do-
poirt-neighbors (connectedness) &body body). Point is set to each neighbor (.1 or 8
connected) in turn and body is executed. The expansion is of the form (setf point
ni) body (setf point n2) body ...

do-polyline (pO p1 polyline &key (closedp t) (return nil)) &body body [Macro]

Iterate over each segment in a polyline. If body doesn't do an explicit return, 'return'
is returned.

do-vertex-neighbors (neighbor connection vertex 8key (edge (gensym))) Vibody body [Macro]

Iterate over the neighbors of 'vertex'. 'Vertex' and 'neighbor' are structures.

dofiremap (point &key upper-left lower-right (resolution *gc-cell-resolution*)) FVbody body [Macr]

Iterate over a rectangular area of a map inclusive of upper-left and lower-right points.
If the bounds aren't specified, use the full extent of the map.

doneighbors (neighbor point &ikey (neighborhood *square-neighborhood.) neighborlist [Macro]
min-radius maz-radius distance angle path (resolution *gc-cell-resolution)
(grid-size nil) (check-bounds nil) (index nil)) Vbody body

Iterate over neighbor points in neighborhood array. If 'neighborlist' is not specified,
iterate over all neighbors. Note: 'neighbor' is destructively modified.

map-fire-region function fire map [Function]

Iterate over every point contained in the region of fire.

map-fire-to-boundary function fire map &key (resolution 'fire-cell-resolution')  [Function]
(stop-at-natural- boundaries t) (boundary-in- region-p nil)
(nature!- boundaries-in-region-p ni,) (v, isied-poQif!-bitorr~y nil)
Iterate over every point contained in the region of fire, up to the fire boundary. Stop
spreading at natural boundaries.

map-pixals-on-line function pl p2 resolution Vrest other-args [Function]

Map over all pixels between two points. The traversal is from pl to p2. The point
argument to the function is destructively modified. If the function returns two values,
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and the first value is :return, t hen (ie c apping is terminated and Lte second value
is returned; otherwise, returns N IL.

some-pixel-on- line predicate start finzsh resolutzon (Macrol

Execute predicate for each point on line. If predicate ret urns non-ili, return that
value.

visit-neighbors connectivity [Mlacro)

Visit all neighbors .1 or 8 connected front the current point. Can only be used within
the lexical scope of cdo-poilt-set'.



Chapter 8

Interface

This chapter describes how to interface with Phoenix. There are three broad interfacing activities:
Defining new commands, displaying things on the firemap windows and adding new types of windows
on the desktop.

When Phoenix is started, an instance of the fire-system flavor is created. The entire user interface
is based on UCL (TI's Universal Command Loop), therefore the fire-system flavor is built up from
UCL flavors and inixins. Almost all interface commands are messages to the current fire system.

8.1 Adding New Commands

Several UCL command tables are used by Phoenix. To define a new UCL command decide which
command table to add the command to or, if necessary, create a new command table. The convention
used in Phoenix is that a directory of code may contain two files: COMfAIND.METHODS.LISP and
MAKE-COMMANDS.LISP. The conmmand-method file contains all of the methods used to implement
the commands and the make-commard file contains all of the calls to define the commands and build
tihe command tables. All command methods must be methods of the fire-system flavor. Look at
some of the existing files to see how command tables and commands are defined.

8.2 I/O and Firemaps

A library of functions can be used to perform graphical operations on windows that display firemaps
(eg. highlight-line). In addition, the mouse can be used to select positions and icons from a map.
These functions are described in chapter 9.

8.3 icons

An icon is an graphical object that can be displayed and moved around on a fireinap. All firenaps
contain sets of icons that are automatically displayed. Icons can be created, deleted and moved on a
firemap. All agents in Phoenix are displayed by icons (bulldozers, watchtowers, etc.) Icons and the
routines for manipulating them are described in more detail in chapter 9

4t7
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8.4 Defining New Desktop Windows

To build a new window suitable for use on the desktop, add the utils: :dAeskop-mixin flavor to Lhe
component flavors of the window. Write a "make" function to make a new instance of your window
and initialize it - the function select-or-create-window-on-desktop should be usefil for this. The
define-desktop-window macro will associate the window type with the make function and will also
add the window type to the list of window types that can be created by left-clicking on the desktop.
The following code was written for the system to take an existing flavor, firemap-window, and build
a new flavor that can be used on the desktop.

(pushnew 'desktop-firemap-window *standalone-flavors*)

(defflavor desktop-firemap-window
()
(utils::desktop-mixin
firemap-window)

(:default-init-plist
:font-map *fire-system-font-map*
:foreground-color *fire-system-fg-color*
:background-color *fire-system-bg-color*
:border-color *fire-system-border-color*
:scroll-bar-mode :maximum))

(defmethod (desktop-firemap-window :after :init) (ignore)
(declare (ignore ignore))
(send self :set-firemap (real-world-firemap)))

(define-desktop-window "Firemap" make-desktop-firemap-window)

(defun make-desktop-firemap-window ()
"Create a firemap window on the desktop."
(let* ((window (select-or-create-window-on-desktop 'desktop-firemap-window)))

(send window :set-label '(:string
,(format nil "Real World Firemap") :centered))

(send window :expose)
window))

Notice that this did some of initializations in make-desktop-f iremap-window and used an :after
:init method to do the rest. This is purely a matter of style.
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Interface Reference Manual

*b&w-desktop-color* [Variable]

*banded-color-map* [Variable]

A pointer to the phoenix color map.

*bitmap-pathname-defaults* [Variable]

Place where bitmaps are written and can always be read.

*blip-alist* Variable)

The alist of mouse character blips that the fire-system window handles.

*color- >highlight-b&w* [Variable]

* color- >highlight -color* [Variable]

*color-desktop-color* [Variable]

*command-command-table* [Variable]

*conmmand-tables* [Variable]

A list of all command table naines.

*debug-screen* [ Variable)

*default-elevation-gradient* [ Variable]

*default-map-editor-state* [ Variable]

*distance-for-sensitivity* [ Variable]

The pixel distance at which the mouse is considered to be on top of an object.

*highlight-b&w-mappings * [Variable]

*highlight-colors* (Variable)

*highlight-cyan* [Variable)

*highlight-orange* [Variable]

*highlight-ptxple* [Variable)

*highlight-red* [Variablel

*highlight-white* [Variable]

*highlight-yellow* (Variable]

*initial-resolution* [Variable]
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The resolution at which a fireinap-winclow initially displays le' firemap.

*initial-screen-configuration* [Variable)

The initial fire-system window configuration.

*leave-ghost-obj ects* IVariable)
A wveird drawing variable that results in objects leaving a trail of where they have
bc,:n.

*phoenix- command-menu* [Variable]

*query-about-selecting-phoenix* IVariablel
If true, ask for confirmnation before bringing up-Phoenix.

*remember-highlights* Variablc]

If non-nil then highlights are stored so that the won't be lost during a refresh.

*task-command-table* [Variable]

*task-inspector-menu* [Variable)

*task-menu* [Variable)

*use-cached-maps* [Variable]

Determines whether the firemiap bitmnap caching is enabled.

*use-cojlor-p* [Variable 1
Set to NIL to force B&W.

create-bitmaps &loptional flfire-systetn' "fire-system') (Function]

def ine-desktop-window name function (M1acro]

Add this window type to the mnenu of windows that can be creatcd on Lte desktop.

display-phoenix- icon-window &~optional label &3key (font *icon-window-label-font ') fg [Function]
(bg (are! 'phoenix-icon' 0 0,))

Display the Phoenix startup icon.

do-exposed-map-windows (mapwindow &optional window map) &~7body body [Mlacro]

Execute 'body' with 'mapwindow' bound to each of the exposed firetnap wind~ows in
succession.

domapwindows (window &~optional point (can-be-deex posed nil)) Miody body (Mfacro]

Iterate over each of the windows viewing this inap. If point is specified, point must
be visible. If can-be-deexposed is nil, then the window miust be exposed.

find-phoenix-system [Function]

Called when SYSTEM S is hit.

activate-all-tasks [Method of f ire-system]

:activate-task &ioptional task [Method of f ire-system]

active-agents (Method of fire-system]

:all-fireniaps [AMethod of f ire-system]

all-inferiors (Method of f ire-system]

:all-tasks (Method of f ire-system)

:base-time [Method of f ire-system]

clcar-highl-ghts (Method of f ire-system]



clear-trace-window (Mlethod of fire-svstermi

:deactivate-task Voptional task [AMethod of f ire-svstemi

:delete-task task I ethod of f ire-systei

:describe-task FVoptional task [Mlethod of fire-systemi

edit -env ironment [AMet hod of fire-s ystemi

:edit-f ire (Mlethod of f ire-svstemi

:edit-task &optional task [Aet hod of f ire-svstenj

elapsed-time (Method of f ire-svstem)

:erase-f ire V3optional (confirm t) (refresh t) (Method of f ire-sYstemi

exposed-f iremap-windows (Mfethod of fire-systemi

get-environment (Mlethod of f ire-systemi

:get-environment-parameter param &.optional default (Mlethod of f ire-systeml

inspect-task &~optional task (Mfethod of fire-svstemi

:macro-step-scheduler FVoptional (n 1) (Mlethod of f ire-system]

Macro step the system n 'times'.

:macro- step- scheduler-and-wait &optional (ii 1) [Mfethod of f ire-systeml

:meter-task &optional task [AMethod of f ire-svstemi

Turn on task mnetering.

real-world-f iremap [Mlethod of f ire-system]

refresh-all-windows [Afethod of f ire-system]

ref resh-obj ects (Mlethod of f ire-system)

:reinitialize f6optional (qu~ry 1) (create-agents t) [Mfethod of f ire-systemi

:reset-and-activate-all-tasks &goptional (query 1.) [Mlethod of f ire-system)

Reset all the tasks and the scheduler. Erase the fire.

:rn optional time-to-rum (Mfethod of f ire-system)

Run the system. Optionally, run it for 'time-to-run' minutes.

scheduler [Mfethod of fire-system!

select-configuration (Mlethod of f ire-system]

set-all-tasks .newvalue. (Mfethod of f ire-systemi

:set-base-time .newvalue. (Mlethod of f ire-system]

set-environment plist (Methnd of f ire-systemi

set -environment -parameter param value (Method of f ire-systemi

:set-real-world-f iremap .newvalue. (Mlethod of fire-systemi

single-macro-step-scheduler (Mfethod of fire-systemi

Macro step the system one time.

:single-step (MIcthod of fire-system]

Run the system [or Lte smallest time interval possible.

start (Mlethod of f ire-system]

Start the system.
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:start-f ire Voptional radius point Voptional point-y [Afcthod of fire-system]

:stop [Method of fire-system]

Stop the system.

:task-menu-items Voptional (task-type t) initial- task.list [Mdthod of fire-system)

:toggle-firemap Vop ional (neztp t) [Method of fire-system)

Make the left fireniap pane in a 'two-view' configuration di-play a new firemap. The
firemap chosen is the itext one in the fireniap list. If nextp is NIL, use the previous
map on the lit.

:view-firemap &optional task [Method of fire-system]

fire-system-all-tasks fire-system [Function]

fire-system-base-time fire-system [Function]

fire-system-elapsed-time fire-system [Function]

f ire--system-real-world-f iremap fire-system [Function]

fire-system-scheduler fire-system [Function)

: edit-parameters [MAe'hod of firemap-window]

: find-object-near-point point [Mfethod of firemap-window]

Returns the object nearest to point.

:firemap [Method of firemap-,indow]

:mouse-select-window-point &optional (mouse-doc "select a screen [iMethod of firemap-window]
point.") Vkey (mouse-char
tv:mouse-glyph-hollow- circle-pointer)

Select a point from the map using the mouse. Return the point selected and the
button clicked. Only single clicks are accepted. Mouse-M is bound to Abort (that is,
it returr.s NIL as the point selected).

:move-object object old-position new-character [Method of firemap-window]

Draw object on screen.

:obj ect-menu z y (Method of firemap-t'indow]

Called when right click near object

:origin-x [Method of Iiremap-window]

:origin-y [Method of f iremap-window]

:point-on-screen-p point [Method of f iremap-window]

:point-screen-x point [Method of f iremap-window]

:point-screen-y point (Method of firemap-window)

:redraw-cell point [Method of firemap-window]

Redraw a single cell.

:refresh-highlights [Method of firemap-window]

:refresh-obj ects [Method of f iremap-window]

:set-firemap map &optional (refresh t [Method of firemap-window]

highlight-cell point Fikey resolution color type alu map window (Function]

Highlight a cell. 'type' is :filled or :outline. All visible maps are highlighted unless
'map' or 'window' is specified.
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highlight-edge edge N key full width color type alu units arrowp map window [Function]

Highlight an edge. 'width' is width of line (in units :pixcls (default) or :meters).
'type' is :solid or :dashed. All visible maps are highlighted unless map or window is
specified.

highlight-extent pl p2 &key width color type alu map window (Function]

Highlight a rectangular region. 'P' can be either a point. or an extent structure.
'type' is :filled, :outline, or :dashed. All visible maps are highlighted unless 'map' or
'window' is specified.

highlight-fire fire &rest args key (spokes nil) (color 'highlight-cyan ') (projections [Function]
nil) &allow-other-keys

highlight-fire-cell point key color type alu map window [Function]

Highlight a cell at fire resolution. 'type' is either :filled, :outline. All visible maps are
highlighted unless 'map' or 'window' is specified.

highlight-line from-point to-pont key width color type alu units arrowp arrowheadsize[Function)
fill.arrow-p band clip map window

Highlight a line between two points. 'width' is width of line in 'units' (:pixels (default)
or :meters)). 'type' is :solid or :dashed. If 'arrowp' is T, draw an arrow head at 'to-
point'. All visible maps are highlighted unless map or window is specified.

highlight-point point &key radius color type alu units map window [Function]

Highlight a point (draw a circle around it). 'units' is Ile uniis of 'radius' (:pixels
(default) or :meters.) 'type' is either :oulline or :filled (default). All visible maps are
highlighted unless 'map' or 'window' is specified.

highlight-polyline pont-list Fkey width color type alu units arrowp closedp center map[Function
window
Highlight a chain of line segments defined by the list of points. 'width' is width of
line (in units :pixels (default) or :meters). 'type' is :solid or :dashed. If 'arrowp' is
T, draw an arrow head at the end point, if 'closedp' is T (default), the points form a
closed polygoi,. All visible maps are highlighted unless 'map' or 'window' is specified.

highlight-vector point angle radius fVkey width color type alu units arrow map window [Function]

Highlight a vector. 'width' is width of line (in units :pixels (default) or :meters).
'type' is :solid or :dashed. If 'arrowp' is T, draw an arrow head at the end point.
'length: is the length of the vector in :length-units (:meters (default) or :pixels) All
visible maps are highlighted unless map or window is specified.

:add-firemap map (Method of icon]

:after :init &rest ignore (Method of icon]

:after-draw-character-function Method of icon]

:b&w-character (Method of icon]

:before :kill Vrest ignore (Method of icon]

:bg-color (Method of icon]

:color-character [.fethod of icon]

:current-character (Method of icon]

:fg-color [Atetliod of icon]

:firemaps (Method of icon]

:minimum-display-size (Method of icon]
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:name [Method of icon]

:object-size [Method of icon]

:orientations (Afethod of icon]

:position [Method of icon)

:print-self stream FOrest ignore (Method of icon

:remove-firemap map [Metkod of icon]

: set-af ter-draw-charact er-function .newvalue. (Afethod of icon

: set-b&w-character .newvalue. [Method of icon

: set-bg-color .newvalue. [Method of icon]

:set-color color [Method of icon)

:set-color-character .newvalue. [Method of icon]

:set-current-character .newvalue. [Method of icon)

set-f g-color .newvalue. [Method of icon]

set-f iremaps .newvalue. (Methud of icon]

:set-minimum-display-size .newvalue. [Afethod of icon]

:set-name .newvalue. (Method of icon]

: set-object-size .newvalue. [Method of icon]

:set-orientations *newvalue. (Method of icon

: set-position .newvalue. [Method of icon]

:wrapper :set-position &body body [Method of icon]

icon-af ter-draw-character-funct ion icon [Function]

icon-b&w-character icon [Function]

icon-bg-color icon [Function]

icon-color-character icon [Function]

icon-current-character icon [Function]

icon-fg-color icon [Function]

icon-firemaps icon [Function]

icon-minimum-display-size icon (Function]

icon-name icon [Function]

icon-object-size icon [Function]

icon-orientations icon (Function]

icon-position icon [Function]

load-bitmaps £dkey (background t) [Function]

Load the bitmaps for firemap bitmap caching.

make-desktop-firemap-window [Function]

Create a firenuap window on the desktop.

move-an-object object &optional old-position new-character [Function]

move-rectangle-within-window window x y width height (Function]

outline-cell point &irest args [Function]
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outline-fire-cell point &rest args [Function]

random-highlight [Function]

Picks a random color- from '"highlight-colors ''.

save-bitmaps [Function]

Save the bitmaps for firernap bitmap caching. See bitnnp-patlhname-defaulIts*.

save-color-map f&optional (filenare "ph:fonts;banded-color.map") (Function]

Use this function to write the color map to disk.

set-phoenix-icon-background-color color [Function]

spurn [Function]

S elect P oint U nder M ouse - selects a point with- the mouse and returns it.

using-band (band) &'body body [IAacro

Use a band just in a single window. This alters the plane-mask of the window so that
only the specified color planes will be changed by drawing routines.

with-highlight (highlight-form) body body [Macro]

Executes body with highlight specified in ' highlight-form' turned on then turns it
off.

with-method-clipping &ibody body [Macro

Should be used if drawing methods are used.
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Chapter 10

Fire Simulation

The fire simulation is controlled by a periodic-task which is an instance of the fire-simulation flavor.
By default, the fire-simulation -updates the fire every five minutes. The computation of rate of spread
is based on ground-cover, elevation gradient, wind speed, wind direction, humidity and temperature.
The simulator implements most parts of the fire model in [4], though it doesn't include season, cloud
cover, time of day and slope orientation (ie. south side of a mountain) as provided in the model.
Information about burn times and spotting was empirically derived.

The basic implementation idea is as follows: whenever a cell catches on fire, the ignite lime of all
its neighbors is computed. If a neighbor already has an ignite time, and the ignite time from the
newly ignited cell is earlier, the earlier time is used. The simulator maintains a-large queue of cells
to be ignited, sorted by ignite time. Since fire changes state, (low->hot->smolderig->burned-out),
burning cells have state change times. Burning cells are also kept-in tile queue.

While Lhe next event in the queue occurs before the end of the
current five minute cycle

oLf the event is- an ignition event
ignite the cell
compute its change state time
enqueue the change event
for all neighbors of the- cell
if neighbor is ignitable
it = time it takes for fire to spread from cell to neighbor +

ignite.time(cell)
if ignite-time of neighbor is nil or it < ignite-time(neighbor)

ignite-time(neighbor) = it
-enqueue (neighbor)

If event is a- change state event
set cell fire state
if cell is still burning

compute new change state time
enqueue (cell)

Tie "neighbor" set of a cell-consists of all adjacent cells (8 connected) pius all cells a knight's move
away; thus-a cell has 16 neighbors. The reason for the including the knight's tour is to smooth out
the shape of a fire. With only 8 neighbors, fires tend to be oddly shaped unless tile wind comes-from
one of the eight compass points. Even with 16-neighbors the fire looks odd when the wind cones-froim
certain directions. This can be fixed, at a cost-in cpu time, by-increasing the number of directions in
which a fire could spread.
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Before deciding to compute the ignition of a neighbor, the simulation checks to see if the neighbor is
ignitable. A neighbor is ignitable if:

* The neighbor contains burnable ground cover (ie. no lake) AND

" Either there are no obstructions between the cell and neighbor (roads & rivers) or the obstru, tion-
can be jumped (tested probabilistically)

When the simulator changes a fire state it modifies the real-world-f iremap. The simulator stores
simulation information in the real-world map in fire-info data structures.1

'INTERNAL NOTE: This should he changed. The renl-world map should just contain fire state, type (mod 4)
The simulation can use its own map of type T, to store the fire-info. That would really clean tp the fire access code
and hide the simulation's implementation from other tasks
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Fire Simulation Reference Manual

*default-fire-increment* [Variable]

Default period for the fire -simulation task.

*default-spotting-scale-factor* [ Varrable]

Amount to modify the base probabilities of fire spotting. 0 = no spotting. rhis is a
multiplier for the values in '*jump-probabilities*'.

*features-that-stop-fire* [Variable]

*gc-transition-times* [Variable]

AN array containing the amount of time to change from state to state (nothing ->
low -> hot -> smouldering--> burnedout) indexed by ground cover.

*humidity-temperature->f uel-moisture* [ Variable]

*initial-environment* [ Variable]

*jump-probabilities* [ Variable]

The probability that a-fire-cell containing a feature of the specified type will catch
fire.

*primary-wind-direction-change-iterval* f Variable]

*primary-wind-speed-change-interval* [ Variable]

burnable-cell? cell-point map [Function]

T iff the cell has burnable ground cover [that is, it isn't water].

burnable-ground-cover-p ground-cover [Function]

calculate-ros from-gc angle slope-percent &optional (verbose nil) (randomize t) [Function]

Given a cell on-fire, calculatethe rate of spread in the direction of to-cell. Return a
value in -meters/minute.

cell-stops-fire-p p-map -&optiona!-(resnl ution. gc-cell-resolutionn ) [Function]

chop-up-segment-at-nonburnable-celis pO pI map [Function]

Returns a new list of segments on- the segment [PO,P11 which don't cross -any non-
burnable cells [lakes], but- with-endpoints that are in the lakes.

copy-fuel-model object [Function]

create-fire-info [Function]
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current-wind-direction (Function)

fire-simulation [Functioni

:highlight-queued-for-ignition [Afelhod of fire-simulation)

:ignite-cell point firest ignore [Alethod of fire-simulation

Interactively set cell on fire.

:recalculate-all-ignite-times [Alethod of fire-simulation]

:recalculate-ignite-time point [Afethod of fire-simulation

Recalculate the ignite time for the specified point. This should be called anytime
something happens that may effect the ignite- time -(ie., fire-line, rctardent, wind
change, etc.).

: set-update-maps .newvalue. [Method of fire-simulation]

fuel-model-moisture->base-ros fuel-model [Function

fuel-model-non-array-wind-factor fuel-model [Function]

fuel-model-p object [Function

fuel-model-slope-percent-> slope-f actor fael.model (Function]

fuel-model-type fuel-model [Function)
fuel-model-wind- >wind-f actor fuel-model IFunction
pfi &optional (point (spurn)) (Function

P rint F ire I nfo at 'point' to *standard-output*. Used for debugging.

randomize-wind-magnitude mag [Function)

Modify wind mag. +/- 10%.

rate-of-spread gc direction grade [Function

re-calc-ignite-time point Voptional (combination-method :minimum) [Function]

Recalculate the ignite time for the -specified point. 'combination-method' is either
:set or :minimum.

ros pl p2 map (Function]

Return the rate of spread of the fire-from pl to p2 in meters/second. Return NIL if
fire can't spread over the ground cover.

simulate-forward £Voptional (steps 1) (refresh-t) (Function]

Run the fire simulator for 'steps' steps-of its default-period. If 'refresh'- is non-nil the
display is updated.

time-to-ignite gc distance angle delta-elevation [Function]

Return the time ignite-cell should catch on-fire (in seconds)

wind-magnitude-fn magnitvde angle [Function]
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Miscellaneous Functions Reference
M Anual

*f iremap-area* Va ria ble]

GC area where firemap data is stored.

fpi [Constant]

pi as a single float.

assocf alist item -optional default [Function]

assocq alist item (Function]

break-string string length (Function]

Break a string at spaces and hyphens across several lines of length.

call-stack &optional (process current-process) [Function]

Return a-list of the functions- on the call stack.

deletef item list- &rest delete-args [Macro]

Same as (setf list- (delete item list delete-args)).

div2 -i -&optional (power -) [Macro]

Divide positive fixnum i by 2 or a power of 2.

exp2 n (Macro)

2^n

flag->object flag [Macro

log2 n [Macro

Log of n- to base 2.

make-initialized-array &rest inits [Function]

max-using-zero-if-nil a b (Function

rod2 n power [Macro]

Find n mod a power of 2.

name-of objrct [Function]

Tries to return a reasonable handle for object.

61



62 CHAPTER 12. MISCELLANEOUS FUNCTIONS REFERENCE MAANJIA

nice-call-stack [Function]

Return a call stack starting at the right spot.

nmerge-list listi list2 compare-f. 6Vkey (key (function identity)) (Function]

Destructive merge of list2 into listl. Both lists are may he changed. This works best
if the lists are NOT cdr-coded.

object->flag object [Macro)

object-in-resource-p resource-name object [Function]

Determine if object is in the free pool of resource RESOURCE-NAME.

ject-set firest objects [Macro]

Forms a set out of a bunch of objects. Same as (set-add (object->flag ol) (object-
>fag 02) ...).

ordered-insert elt list &optional (test-fn (function <)) key [Function]

Insert elt into an ordered set.

ordered-insertf item list Jrest args (Macro]

Same as (setf list (ordered-insert item list args).

ph-apropos string Fikey predicate boundp fboundp (Function]

Looks-for STRING in the Phoenix package only.

ph-who-calls symbol-or-symbols [Function]

Print who calls 'symbol-or-symbols' in the Phoenix package.

phoenix-float n [Macro]

A faster version of (float n 1.Of0).

remassoc alist key (Function]

removef item list 6rest delete-args [Macro]

Same as (setf list (remove item list delete-args)).

set-add set &.rest flags [Macro]

set-addf set iVrest flags [1[acro]

set-assocf alist key value (Macro]

Alist must be a setffable form. Shouldn't be a function returning an alist.

set-clear set Vrest flags [Macro]

set-clearf set £6rest flags [Macro]

set-test set flag [Macro]

some* (element list) &ibody body (Macro]

An iterative version of the function 'some'. Bind each element of list in turn. If body
returns non-nil, return the result. This is faster than the regular function, especially
when lexical variables are used in the predicate.

square z [Function]

times2 i &.optional powur [Macro]

Multiply by a power of 2.

trunc-coord cord [Afacro]

trunc-x point [Macro]



63

trunc-y point Placro)

trunc2 n power Pfacrol

Truncate n to a power of 2.

truncate-to-f actor n factor [f~acrol

w ith-phoenix -package &body body fac1
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Appendix A

File Organization

The Phoenix sources are distributed among various directories on the logical host "PH:".

"AM;" Definitions of -the standard agent model, communication, reflexes and sensors.

"A U;" Agent utilities.

"BD;" Bulldozer KBs and definitions.

"COLOR;" Color enhancements.

"DFB;" Distributed ,reboss KBs and definitions.

"DOC," Documentation.

"FB;" Fireboss KBs-and definitions.

"FC;" Fuel carrier -KBs-and definitions.

"FD;" Fuel depot KBs-and definitions.

"FIREAMAP;" Firemaps and firemap window definitions.

"FONTS;" Fonts and color-tables.

"PS;" Interface and -top level definitions.

"IN;" Instrumentation utilities.

"MAPS;" Compiled map files.

"PA;" The Phoenix-agent definitions and utilities.

"PATCJIES;" Patch files and directories.

"PH;" The top level Phoenix directory.

"PL;" Plane KBs anddefinitions.

"SCENARIOS;" Scenarios and scripts.

"SIM;" Fire simulator code.

"TASKS;" Tasks and task scheduler code.

"IVT;" Watchtower KBs and definitions.
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Appendix B

System Loading and Maintenance
Reference Manual

*do-phoenix-init* [Variable]

Df.ermines whether the initializations on 'phoenix-initialization-list' are run when
the-system is loaded.

*phoenix-initialization-list* [Variable]

This initialization list is'run during the initialization of the Phoenix system.
*phoenix-package* [ Variable]

The "Phoenix" package.
*phoenix-system-eneric-liles* [ Variable]

A list of all-generic pathnamesthat make up phoenix. This is needed to make sure
that no pathnames are GC'ed away.

*standalone-flavors* [Variable]

List of all flavors that should be compiled.
add-phoenix-initialization name form' [Function]

Add a form to be run at Phoenix initialization time.

compile-phoenix-for-load-band &foptional force-increment-patch-version [Function]

Compiles and loads Pheonix, rebuilds flavors and- clears patches.

find-component-systems-with-files system [Function]

Return the-list of component-systems for a system. The components are returned in
an-order suitable for compilation.

make-phoenix Lirest make-system-args [Function]

Run make-system for-all Phoenix sui.systems.

make-phoenix-specific &rest make-system.args [Function]

-Run make-system for all PIr .ix specific-systems.

make-phoenix-utils frest-make-system-arg [Function]

Run make-system for the Phoenix External Utils system.

phoenix-patch-level [Function)

Returns the number of patches -that have been made to the current Phoenix system.
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Glossary
band A bit pattern used to mask lite color lookup (able during graphics drawingoperations. Also

known as a color plane mask.

cell An element in a grid array.

command typein The process-by which a user uses the keyboard and/or mouse to select a predefined

interfacing action to execute.

Cpu time The representation of time that an Explorer process maintains.

desktop An overlapping window interface to Phoenix.

Explorer Texas Instrument's standalone Lisp workstation.

Explorer II A high-performance Explorer based upon a TI's VLSI Lisp microprocessor.

feature edge A representation of a topographical surface feature which has a start point, an end
point and a width.

firernap A comprehensive data-structure which represents topographical information such as ground
cover, roads, rivers, buildings, fire and- firelines.

firemap pane A tiled-window component of the Phoenix window interface which displays the firemap.

grid array A two dimensional- matrix which holds topographical information.

internal time The representation of-time which is used by the internal data structures of the testbed.

neighborhood A descriptive specification using relative positions of the cells near a cell in a grid
array.

pointset A data structure consisting-of a set of points. Often used in region-growing algorithms.

polyline A data structure consisting set of lines. Used to define curves.

process An Explorer process. A set of sequential operations in shared virtual address space with a

program counter, stack of function calls and special-variable bindings.

simple process A process that does not save its state between calls.

simulation time The representation of time which is presented to the user-by the Phoenix interface.

task The basic computational organizational unit in the testbed. Built upon-Explorer processes.

task time The representation -of internal time that a task maintains.
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(mod 16) allocate-fire-info

Element type of ground cover grid-array, Function, 32
24 angle-between-points

Element type of fire grid-array, 27 Function, 39
(mod 4) area-of-triangle

Element type of fire grid-array, 58 Function, 39
(mod 65536) assocf

Element type of elevation grid-array, 24 Function, 61
1-second-compute assocq

Function, 9, 13 Function, 61
i/S-second-compute average-point

Function, 13 Function, 39
: activate :b&w-character

Method of task, 6, 14 Method of icon, 53
Keyword, 6 *b&w-desktop-color*

:after :activate Variable, 49
Method of task, 6-7, 10 *banded-color-map*
Method of periodic-task, 8 Variable, 49

: activate-all-tasks base-time

Method of fire-system, 50 Function, 13
: activate-task :base-time

Method of fire-system, 50 Method of fire-system, 50
: active-agents :bg-color

Method of fire-system, 50 Method of icon, 53
: add-f iremap bit

Method of icon, 53 Element type of fire grid-array, 27
add-phoenix-initialization *bitmap-pathname-defaults*

Function, 67 Variable, 49
:after-draw-character-function *blip-alist*

Method of icon, 53 Variable, 49
after-task-execution break-string

Function, 18 Function, 61
*all-features-flag* brief-time-stamp

Constant, 33 Function, 13
all-firemaps burnable-cell?

Function, 37 Function, 59
:all-firemaps burnable-ground-cover-p

Method of fire-system, 50 Function, 3.1, 59
:all-inferiors calculate-ros

Method of fire-system, 50 Function, 59
:all-tasks call-stack

Method of fire-system, 50 Function, 61
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tv :careful-notify Function, 35
Function, 11 cell-static-feature-edge

cell-approx-elevat ion Function, 35
Function, 25, 35 cell-static-features in-area

cell-boundary-crossed-multiply-by-features-p Function, 35
Function, 35 cell-stops-fire-p

cell-center-point Function, 59
Function, 40 center-point

cell-dynamic-edges Function, 40
Function, 35 chains->km

cell-dynamic-feature Function, 39
Function, 35 chains->meters

cell-dynamic-feature-edge Function, 39
Function, 35 chains/hour- >meters/internal-time

cell-dynamic-features-in-area Function, 39
Function, 35 chains/hour- >meters/minute

cell-elevation Function, 39
Function, 25, 28, 35 chains/hour->meters/second

cell-feature Function, 39
Function, 29, 35 :check-for-non-vertex-intersections

:cell-feature Method of firemap, 37
Method-of firemap, 35 chop-up-segment-at-nonburnable-cells

cell-feature-edge Function, 59
Function, 35 *circle-neighborhood-radius-index*

cell-feature-flag Variable, 45
Function, 35 *circle-neighborhoods*

cell-features-in-area Variable, 45
Function, 35 :clear-highlights

cell-fire Method of fire-system, 50
Function, 36 :clear-trace-window

cell-fire-burn-state Method of fire-system, 51
Function, 36 :closure

:cell-fire-burn-state Method of task, 15
Method of firenap, 36 *color->highlight-bw*

:cell-fire-display-info Variable, 49
Method of firemap, 36 *color->highlight-color*

cell-fire-flags Variable, 49
Function, 36 :color-character

cell-fire-info-structure Method of icon, 53
Function, 37 *color-desktop-color*

cell-fire-state Variable, 19
Function, 29, 37 *command-command-table*

cell-ground-cover Variable, 49
Function, 24, 28, 36 *command-tables*

:cell-ground-cover Variable, 49
Method of fir-map, 36 compile-phoenix-for-load-band

cell-ignite-time Function, 67
Function, 37 continuation-format

cell-static-edges Function, 13
Function, 35 copy-extent

cell-static-feature Functiov, 40
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copy-feature-edge Function, 60
Function, 38 :deactivate

copy-fuel-model Method nf task, 6, 15
Function, 59 :after :deactivate

count Method of task, 15
Instance Variable of periodic-task, 8 :before :deactivate
Instance Variable of explicit-task, 8 Method of task, 7

:cpu-time :deactivate-task
Method of task, 15 Method of fire-system, 51
Keyword, 5 :deallocate

cpu-usec->internal-time Method of firemap, 28, 37
Function, 13 debug-format

*cpu-usec/internal-time* Function, 10, 13
Variable, 13 *debug-screen*

: cpu-usec/internal-time Variable, 49
Method of task, 15 *default-elevation-gradient*

cpu-usec/internal-time->minutes/cpu-sec Variable, 49
Function, 13 *default-f ire-increment*

create-bitmaps Variable, 59
Function, 50 *default-firemap*

create-extent Variable, 28, 37
Function, 40 *default-map-editor-state*

create-fire-info Variable, ,49
Function, 59 *default-map-file*

: create-static-edge Variable, 37
Method of firemap, 35 *default-spotting-scale-factor*

create-task-demo-tasks Variable, 59
Function, 9 deffeature

*cs-burned-out-fire* Macro, 34
Constant, 28, 32 deffire

*cs-hot-fire* Macro, 32
Constant, 28, 32 defground-cover

*cs-low-fire* Macro, 34
Constant, 28, 32 define-desktop-window

*cs-mask* Macro, 48, 50
Constant, 32 defmapfn

*cs-no-fire* Macro, 34
Constant, 28, 32 degrees->radians

*cs-smoldering-fire* Function, 39
Constant, 28, 32 :delete-edge

: current-character Method of firemap, 35
Method of icon, 53 :delete-edge-from-array

current-scheduler Method of firemap, 35
Function, 20-21 :delete-point-edges

*current-scheduler* Method of firemap, 35
Variable, 21 :delete-point-feature-near-point

*current-task* Method of firemap, 35
Variable, 18, 21 :delete-task

current-time Method of fire-system, 51
Function, 13 :delete-window

current-wind-direction Method of firemap, 37
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deletef Functiou, 38
Macro, 61 :edit-environment

: dequeue-task Method of fire-system, 51
Method of task-scheduler, 21 :edit-f ire

:describe-task Method of-fire-system, 51
Method of f ire-system, 51 :edit-parameters

utils: :desktop-mixin Method of task, 15
Flavor, '18 Method of task-scheduler, 21

direction Method of firemap-window, 52
Function, '10 :edit-task

display-phoenix-icon-window Method of fire-system, 51
Function, 50 :elapsed-time

*distance-for-sensitivity* Method of fire-system, 51

Variable, 49 :elevation

div2 Method of firemap, 31
Macro, 61 *elevation-cell-resolution*

do-exposed-map-windows Constant, 24, 32
Macro, 50 *elevation-cell-size*

do-feature-edges Constant, 32
Macro, 45 :enqueue-task

*do-phoenix-init* Method of task-scheduler, 21

Variable, 67 :erase-fire
-do-point-set Method of firemap, 28, 37

Macro, 45 Method of fire-system, 51
do-polyline *essentially-zero-threshold*

Macro, 45 Variable, 39
do-vertex-neighbors estimated-time

Macro, 45 Function, 13
dofiremap exact-point-separation

Macro, 45 Function, 40
domapwindows exact-time

Macro, 50 Function, 7, 13
doneighbors exact-time-stamp

Macro, 45 Function, 13
dont-swapout-function exp2

Macro, 11, 21 Macro, -61
:draw-objects :exposed-f iremap-windows

Method of firemap, 37 Method of fire-system, 51
dynamic-edge-exists-p extend-segment

Function, 36 Function, 40
:dynamic-edges extent-intersection

Method of firemap, 31 Function, 40
*dynamic-feature-flags* extent-lower-right

Variable, 33 Function, 40
edge-cell-list extent-p

Function, 38 Function, 40
:edge-vector extent-upper-left

Method of firemap, 31 Function, 40
edges-in-area *f-building*

Function, 38 Constanti-25, 33
edges-meet-at-vertex-p *f-fireline*
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Constant, 25, 33 feature-edge-top-point-to

*f-river128* Function, 38

Constant, 25, 33 feature-edge-type

*f-river16* Function. 38

Constant, 25, 33 feature-edges

*f-river32* Data Struchire, 27

Constant, 25, 33 feature-name

*f-river4* Function, 3.1

Constant, 25, 33 *feature-names*

*f-river64* Variable, 33

Constant, 25, 33 feature-of-type-in-area-p

*f-river8* Function, 38

Constant, 25, 33 *feature-overlay-order*

*f-roadi6* Variable, 33

Constant, 25, 33 feature-width

*f-road4* Function, 34

Constant, 25, 29, 33 *feature-widths*

*f-road8* Variable, 33

Constant, 25, 33 *features-that-stop-fire*

*feature-cell-resolutionl* Variable, 59

Constant, 26, 33 *feet-per-km*

*feature-cell-size* Constant, 39

Constant, 33 :fg-color

feature-edge Method of icon, b3

Data Structure, 25 :filename

feature-edge-bot-point-from Method of firemap, 31

Function, 38 find-component-systems-with-files

feature-edge-bot-point-to Function, 67

Function, 38 :find-edge-nearest-to-point

feature-edge-cen-point-from Method of firemap, 36

Function, 38 :find-object-near-point

feature-edge-cen-point-to Method of firemap-window, 52

Function, 38 find-phoenix-system

feature-edge-from-point Function, 50

Function, 38 find-point-on-edge-in-cell

feature-edge-from-vertex Function, 38

Function, 38 find-point-on-some-feature-in-cell

feature-edge-index Function, 36

Function, 38 find-task

feature-edge-length Function, 14

Function, 38 :find-vertex-at-point

feature-edge-p Method of firemap, 36

Function, 38 :find-vertex-nearest-to-point

feature-edge-plist Method of firemap, 36

Puncton, 38 :lire

feature-edge-to-point Method of firemap, 31

Function, 38 fire-burn-state

feature-edge-to-vertex Macro, 32

Function, 38 *fire-cell-resolution*

feature-edge-top-point-from Constant, 32

Function, 38 *fire-cell-size*
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Constant, 32 f iremap-dynamic-edges

:fire-extents Function, 31
Method of firemap, 31 firemap-edge-vector

fire-flag- >number Function, 31

Function, 32 firemap-elevati on

fire-flags Function, 31

Macro, 32 firemap-filename

fire-info Function, 31

Data Structure, 28-29, 58 firemap-fire

fire-info-burn-state Function, 31

Macro, 32 firemap-fire-extents

fire-info-change-time Function, 31

Function, 32 firemap-f iremap-windows

fire-info-ignite-time Function, 31

Function, 32 firemap-ground-cover

fire-info-point Function, 31
Function, 32 firemap-obj ects-to-display

fire-info-state Function, 31

Function, 33 f iremap-static-edges

fire-name Finction, 31

Function, 32 firemap-update-windows

*fire-names* Function, 31

Variable, 32 f iremap-vertex-vector
*fire-neighborhood* Function, 31

Variable, 45 f iremap-window

fire-simulation Flavor, 48

Function, 60 :firemap-windows

Flavor, 57 Method of f iremap, 31

fire-system :firemaps

Function, 2, 29 Method of icon, 53

Flavor, 2, 20, 47 firep

*fire-system* Macro, 33

Variable, 13 fixnum

fire-system-all-tasks Element type of fire grid-array, 27-28

Function, 52 flag->object

fire-system-base-time Macro, 61
Function, 52 fpi

fire-system-elapsed-time Constant, 61

-Function, 52 free-fire-info

fire-system-real-world-f iremap Function, 33
Function, 52 free-operations

fire-system-scheduler Macro, 14
Function, 52 *fs-features-present*

fireline-in-cell-p Constant, 32
:Function, 3G, tf -ignit able#-

firemap Constant, 32
Flavor, 24, 28 *fs-mask*

:firemap Constant, 32
Method of f iremap-window, 52 *fs-not-ignitable*

*firemap-area* Constant, 32 -

Variable, 61 fuel-model-moisture->base-ros
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Function, 60 grid-array
fuel-model-non-array-wind-factor Data Structure, 23

Function,-60 grid-array-aref
fuel-model-p Function, 38

Function, 60 grid-array-ref
fuel-model-slope-percent-> slope-f actor Function, 38

Function, 60 grid-arrays
fuel-model-type Data Strtiruture, 24

Function,_60 :ground-cover
fuel-model-wind- >wind-f actor Method of f iremap, 31

Function, 60 ground-cover-name
*gc-agriculture* Function, 24, 3.1

Constant, 24, 34 *ground-cover-names*
*gc-boundary* Variable, 34

Constant, 24, 34 ground-cover-type
*gc-cell-resolution* Function, 34

Constant, 24, 34 *ground-cover-types*
*gc-cell-size* Variable, 34

Constant, 24, 34 half-line-intersects-segment-p
*gc-chapparal* Function, .40

Constant, 24, 34 :handle
*gc-hardwood* Method of task, 15

Constant, 24, 28, 34 *height-in-meters*
*gc-lake* Constant, 37

Constant, 24, 34 Variable,-23
*gc-marsh* *highlight-bw-mappings*

Constant, 24, 34 Variable, 49
*gc-meadow* highlight-cell

Constant,-24, -34 Function, 52
*gc-rocky* *highlight-colors*

Constant, 24, 34 Variable, 49
*gc-softwood* *highlight-cyan*

Constant, 24, 34 Variable, 49
*gc-suburban* highlight-edge

Constant, 24, 34 Function, 53
*gc-transition-times* :highlight-elevation

Variable, 59 Method of f-iremap, 35
*gc-urban* highlight-extent

Constant, 24, 34- Function, 53
generic-cpu-time-task highlight-fire

Flavor, 5 Function, 53
:generic-cpu-time-task-toplevel highlight-fire-cell

Method-of generic-cpu-time-task, 5 Function, 53
generic-expicit-task highlight-line

Flavor, 5 Function, 47, 53
generic-periodic-task *highlight-orange*

Flavor, 5 Variable, .49
:get-environment highlight-point

Method of fire-system, 51 Function, 53
:get-environment-parameter highlight-polyline

Method of-f ire-system,-51 Function, 53
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*highlight-purple* Method oFdesktop-firemap-window,,18

Variable, 19 Method of icon, 53

:highlight-queued-for-ignition :initial-args

Method of fire-simulation, 60 Method of task, 15
*highlight-red* *initial-environment*

Variable, 49 Variable, 59

highlight-vector :initial-method

Function, 53 Method of task, 6, 15

*highlight-white* Keyword, 5-6

Variable, 49 *initial-resolution*
*highlight-yellow* Variable, .19

Variable, '19 *initial-screen-conf iguration*

hours->internal-time Variable, 50

Function, 14 :inspect-task
*humidity-temperature->fuel-moisture* Method of f ire-system, 51

Variable, 59 install-task-scheduler

icon Function, 20

Data Structure, 47 internal-time- >hours

icon-after-draw-character-function Function, 14

Function, 54 internal-time- >minutes

icon-bkw-character Function, 14

Function, 54 internal-time-> seconds

icon-bg-color Function, 2, 14

Function, 54 internal-time- >useconds

icon-color-character Function, 14

Function, 54 *jump-probabilities*
icon-current-character Variable, 59

Function, 54 :kill

icon-fg-color Method of task, 7, 15

Function, 54 Method of task-scheduler, 21

icon-firemaps :after :kill

Function, 54 Method of task, 7

icon-minimum-display-size :before :kill

Function, 54 Method of icon, 53

icon-name kill-process

Function, 54 Function, 14

icon-object-size km->feet

Function, 54 Function, 39

icon-orientations km->miles

Function, 54 Function, 39

icon-position *km-per-mile*

Function, 54 Constant, 39
ignitable-p km/hour->meters/internal- time

Macro, 33 Function, 39

:ignite-cell km/hour->meters/second
Method of firemap, 37 Function, 39

Method of I ire-simulation, 60 label-format

in-current-task-p Function, 14

Function, 21 label-format?

:after :init Function, 14

Method of task, 6, 15 *leave-ghost-objects*
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Variable, 50 Function, 14
live-fire-p message-type

Macro, 33 Function, -
load-bitmaps :meter-task

Function, 54 Method of fire-system, 51
: load-map *meters-per-chain*

Method of firemap, 37 Constant, 39
log2 miles->km

Macro, 61 Function, 39
:macro-step-scheduler :minimum-display-size

Method of task-scheduler, 21 Method of icon, 53
Method-of fire-system, 51 minutes->exact-internal-time

:macro-step-scheduler-and-wait Function, 14
Method of fire-system, 51 minutes-> internal-time

magnitude Function, 2, 14
Function, 40 minutes/cpu-ec->cpu-usec/internal-time

make-desktop-f iremap-window Function, 14
Function, 48, 54 mod2

make-extent Macro,-61
Function, 40 tv :mouse-confirm

make-initialized-array Function, -11
Function,-61 :mouse-select-window-point

make-instance Method of f iremap-window, 52
-Function, 6 move-an-object

make-message Function, 54
Function, 14 :move-object

make-phoenix Method of firemap-window, 52
-Function, 67 move-rectangle-within-window

make-phoenix-specific Function, 54
Function, 67 :name

make-phoenix-utils Method of task, 15
Function, 67 Method of icon, 54

make-vector name-of
Function, 40 Function, -61

map-f-ire-region nearest-point-on-segment
Function, 45 Function, 40

map-fire-to-boundary nice-call-stack
Function, 45 Function, 62

map-pixels-on-line- nmerge-!ist
Function, 45 Function, 62

max-using-zero-if-nil not-ignitable-p

Function, 61- Macro, 33
message-available-at-time *number-of-features*

Function, 1-4 Variable, 33
message-channel *number-of-fire-states*-

Function, 14 Constant, 32
message-from *number-of-ground-covers*

Function, 14 Variable, 34-
message-send-time object->flag

Function, 1-4 Macro, 62
message-text object-in-resource-p
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Function, 62 Method of firemap, 36
:obj ect-menu :place-static-edge

Method of firemap-window, 52 Method of firemap, 36
obj ect-set point

Macro, 62 Function, .10
:obj ect-size Data Strtture, 23

Method of icon, 54 point-at-resolution
:obj ects-to-display Functieln, 40

Method of firemap, 31 point-at-resolution*

ordered-insert Function, 40
Function, 62 point-at-resolution-wtith-offsets

ordered-insertf Function, 40
Macro, 62 point-difference

:orientations Function, 40
Method of icon, 54 point-difference*

:origin-x Function, 40
Method of f iremap-window, 52 point-distance-from-edge-squared

:origin-y Function, 39
Method of firemap-window, 52 point-distance-from-extents

outline-cell Function, 41
Function, 54 point-distance-from-segment-squared

outline-fire-cell Function, 41
Function, 55 point-distance-from-square

parse-to-internal-time Function, 41
Function, 14 point-distance-squared-from-star-polygon

period Function, 41
Instance Variable of task, 7 point-extent-sector-code

:period Function, '1
Method of task, 15 *point-feature-flags*
Keyword, 5 Variable, 33

pfi point-in-bounds-p
Ftnction, 60 Function, 41

ph-apropos point-in-extent-p
Function, 62 Function, 41

ph-who-calls point-in-st ar-polygon-p
Function, 62 Function, 41

*phoenix-command-menu* point-left-of-line-p
Variable, 50 Function, 41

phoenix-float point-on-edge-p
Macro, 62 Function,39

*phoenix-initialization-list* point-on-feature-of-type-p
Variable, 67 Function, 36

*phoenix-package* point-on-lake-p
Variable, 67 Function, 36

phoenix-patch-level point-on-line-p
Function, 67 Function, 41

*phoenix-system-generic-files* point-on-road-p
Variable, 67 Function, 36

:place-dynamic-feature :point-on-screen-p
Method of firemap, 36 Method of firemap-window, 52

:place-edge-in-array point-on-segment->parameter
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Function, 41 w pop-up-prompt-and-read
point-right-of-line-p Function, I I

Function, 41 popup-stop
point-rotate-around-point Fuinction, -1.1

Function, 41 :position
point-rotate-origin Method of icon, 54

Function, 41 *previous-task*
point-rotate-origin* Variable, 21

Function, 41 *primary-wind-direct ion-change-interval*
point-round Variable, 59

Function, 41 *primary:-wind-speed-change-interval*
point-round* Variable, 59

Function, 41 :print-self
.point-screen-x Method of icon, 54

Method of f iremap-window, 52 *query-about-selecting-phoenix*
.point-screen-y Variable, 50

Method of f iremap-window, 52 *query-task-errors*
point-sector-code Variable, 21

-Function, 41 quick-segment-intersect s-cell-p

point-separation Function, 42
-Function, 41- radians- >degrees

point-separation-and-sin-cos Function, 42
Function, 42 random-highlight

point-separation-lessp Function, 55
Function, 42 randomize-wind-magnitude

point-separation-squared Function, 60
Function, 42 rate-of-spread

point-sum Function, 60
Function, 42 re-calc-ignite-time

point-sum* Function, 60
Function, 42 real-time

point-wrt-line Function, 14
Function, 42 real-world-f iremap

point-x Function, 29, 37
Function, 23, 42 Data Structure, 58

ppint-y :real-world-f iremap
Function, 23, 42 Method of f ire-system, 51

point= :rebuild-vertex-and-edge-vectors
Function, 42 Method of f iremap, 37

pointp :recalculate-all-ignite-times
Function, 42 Mlethod of f ire-simulation, 60

points-in-same-cell-p :recalculate-ignite-time
Function, 42 Method of f ire-simulation, GO

polyjine->segnents :redraw-cell
Function, 42 Method of f iremap-window, 52

polyline-intersects-cell-p :refresh-
Function, 42 Method of f iremap, 37

poly-line-length :refresh-all-windows
Function, 42 Method of f ire-system, 51

utils :pop-up-msg :refresh-highlights
Function, 11 Method of firemap-window, 52
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:refresh-obj ects Method of task-scheduler, 22
Method of- fire-system, 51 same-side-p
Method of f iremap-window, 52 Function, 42

reinitialize- save-bitmaps
Method of f ire-system, 51 Function, 55

remassoc save-color-map
Function, 62 Function, 55

*remember-highlights* :save-map
Variable, 50 Method of f iremap, 37

remove-f iremap :schedule-type
Method of icon, 54 Method of task, 15

removef Keyword, 5
Macro, 62 :scheduler

reset -Method of f ire-system, 51
Command, 7, 10-11, 20 *scheduler-error-message*

:reset Variable, 21
Method of task-scheduler, 22 *scheduler-error-vhere*

:reset-and-activate-all-tasks Variable, 21
Method of f ire-system, 51 *scheduler-swapin-count*

:restart-at-same-time Variable, 21
Keyword, 6 seconds-> internal-time

:restart-ok Function, 14
Keyword, 6 segment&parameter-- point

restart-time Function, 42
Irnstance Variable of task, 5-7 segment&parameter- >Point*

:restart-time Function, 42
Method of task, 15 segmentkparameter- >Point I*

*river-flags* Function, 43
Variable, 33 s egment&paramet er- >point 2

river-'n-cell-p Function, 43
Function, 36 segment-cell-interior-intersection-parameter

r-iverp Function, 43
Function,_34 segment-cell-intersection-

*road-flags* Function, 43
Variable, 33 segment-cell-intersection-parameter

road-in-cell-p Function, 43
Function,_36 segment-edge-intersection-parameter

*road-or-uncrossable-river-flags* Function, 43
V-.riable, 34 segment-feature-bordr-intersection-in-cell

roadp Function, 43
Function, 34 segment-feature-centerline-intersection-in-cell

ros Function, 43
Function, 60 segment-intersection

round Function, 43
Function, 27 segment-intersection-parimeter

rounded-point-p Function, '13
Function, 42 Segment-intersection-parameters

:runi Function, 44
Method of-task-scheduler, 22 segment-interse'cts-cell-p
Method of f ire-system, 51 Funiction, 44

:run-until-time segment-intersects-edge-type-in-cell-p
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Function, 44 :set-current-character
segment-side-segments Method of icon, 54

Function, 44 :set-environment
segment-to-implicit-line Mcthod offfire-system, 51

Function, 44 :set-environment-parameter
segment-to-parametric-line Method of f ire-system, 51

Function, 44 :set-fg-col.or
segment-touches-edge-p Method (,, icon, 54

Function, 44 :set-firemap
segments- >polylines Method of firemap-window, 52

Function, 44 :set-firemaps
segments-intersect-p Method of icon, 54

Function, 44 set-grid-array-aref
:select-configuration Function, 38

Method of fire-system, 51 set-grid-array-ref
select-or-create-window-on-desktop Function, 38

Function, 48 :set-minimum-display-size
send Method of icon, 54

Function, 6 :set-name
set-add Method of icon, 54

Macro, 62 :set-object-size
set-addf Method oficon, 54

Macro, 62 :set-orientations
:set-after-draw-character-function Method of icon, 54

Method of icon, 51 set-phoenix-icon-background-color
:set-all-tasks Function, 55

Method of fire-system, 51 set-point-x
set-assocf Function, 44

Macro, 62 set-point-y
: set-b&w-character -Function, 44

Method of icon, 54 :set-position
: set-base-time Method of icon, 54

Method of fire-system, 51 :wrapper :set-position
:set-bg-color Method of icon, 54

Method of icon, 54 :set-real-world-firemap
:set-cell-elevation Method of-fire-system, 51

Method of firemap, 35 set-test
: set-cell-fire-burn-state Macro, 62

Method of firemap, 37 :set-update-maps
: set-cell-fire-state Method of fire-simulation, 60

Method of firemap, 37 simulate-forward
: set-cell-ground-cover Function, 60

Method of firemap, 36 :single-macro-step-scheduler
set-clear Method -of-fire-system, 51

Macro, 62 :single-step
set-clearf Method of task-scheduler, 22

Macro, 62 Method nf fire-system, 51
: set-color some*

Method of icon, 54 Macro, 62
: set-color-character some-pixel-on-line

Method of icon, 54 Macro, 46
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spurn time-only-stamp
Function, 55 Function, 15

square time-stamp-
Function, 62 Function, 15

*square-neighborhood* time-to-ignite

Variable, .15 Function, 60
*standalone-flavors* *time-units-per-second*

Variable, 67 Constant, -13
:start times2

Method of fire-system, 51 Macro, 62
:start-fire :toggle-f iremap

Method of fire-system, 52 Method of fire-system, 52
:state :trace

Method of task, 15 Method of task-scheduler, 22
:static-edges trunc-coord

Method of firemap, 31 Macro, 62
*static-feature-flags* trunc-x

Variable, 34 Macro, 62
:stop trunc-y

Method of task-scheduler, 22 Macro, 63
Method of fire-system, 52 trunc2

swap-in-scheduler Macro, 63
Function, 5-6, 14, truncate-to-factor

swap-in-scheduler-if-necessary Macro, 63
Function, 14 -truncate-to-grid

t Macro, 38
Element type of fire grid-array, 27-29, 58 tsend

task Function, 6, 15
Flavor, 4 type-of-connection-between-vertices

task-active-p Function, 39
Function, 15 *uncrossable-river-flags*

*task-command-table* Variable, 34
Variable, 50 :update-ell-fire

task-dont-swapout Meritod of firemap, 37
Function,15 :update-windows

task-format Method'of f iremap, 31
Function, 8, 10, 15 *use-cached-maps*

*task-inspector-menu* Variable, 50
Variable, 50 *use-color-p*

*task-menu* Variable, 50
Variable, 50 useconds- >internal- time

:task-menu-items Function, 16
Method of fire-system, 52 useconds- >minutes

task-scheduler Function, 16
Flavor, 18 useconds- >seconds

task-wait Function 16
Function, 15 using-band

task-wait-for-interval Macro, 55
Function, 15 :validate-vertex-and-edge-vectors

task-wait-until-time Nethod-of firemap, 37
Function, 15 vector-end-point
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Function, 44
vegatation-ground-cover-p

Function, 34
vertex

Data Structure, 26
vertex-edges

Function, 39
vertex-index

Function, 39
vertex-p

Function, 39
vertex-point

Function, 39
: vertex-vector

Method of firemap, 31
: view-firemap

Method of fire-system, 52
visit-neighbors

Macro, 46
*width-in-meters*

Constant, 37
Variable, 23

wind-magnitude-fn
Function, 60

with-highlight
Macro, 55

with-method-clipping
Macro, 55

with-phoenix-package
Macro, 63

without-task-swapout
Macro, 22

xy-segment-to-implicit-line
Function, 44

xy-segments-intersect-p
Function, 44


